Urobatis jamaicensis (Cuvier),即黄色黄貂鱼(Nelson 等人,2004 年)(图 1),最初于 1816 年被描述为 Trygon jamaicensis。它之前也被归类为 Trygonobatus torpedinus、Urolophus torpedinus、Urobatis sloani、Urobatis vermiculatus 和 Urolophus jamaicensis(Bigelow 和 Schroeder,1953 年);许多文献都提到了后者的同义词。目前提出了几种系统发育等级,最普遍接受的是:纲软骨鱼纲、亚纲板鳃亚纲、目 Myliobatiformes、科 Urotrygonidae;然而,应该会进一步修订(Nelson,2006 年)。 U. jamaicensis 是一种相对较小的鳐鱼,平均全长 (TL) 约为 335 毫米,盘宽 (DW) 约为 160 毫米。作为板鳃类的典型特征,雌性比雄性大。在我们对 500 多只动物的研究中,记录的最大尺寸是雌性 480 毫米 TL(平均值为 » 345 毫米);而
一、昆虫形态学 昆虫体壁结构、构造和形态;口器、触角及其类型和功能;翅膀:构造和形态、脉络、翅膀连接装置和飞行机制;足:构造和形态。 胚胎后发育。昆虫目中未成熟阶段的类型,卵、若虫/幼虫和蛹的形态,未成熟阶段对于害虫管理的意义。 二、昆虫解剖学和生理学 外皮生理学、蜕皮、角质层化学、几丁质的生物合成;生长、激素控制、变态和休眠期;信息素的分泌、传递、感知和接收。昆虫消化、循环、呼吸、排泄、繁殖、分泌(外分泌腺和内分泌腺)和神经冲动传递的生理学和机制。昆虫营养的重要性——维生素、蛋白质、氨基酸、碳水化合物、脂质、矿物质和其他食物成分的作用;细胞外和细胞内微生物及其在生理学中的作用;人工饲料。III. 昆虫分类学 昆虫目和其中所含的具有经济价值的科的区别性状、一般生物学、习性和栖息地。弹尾目、原尾目、双尾目。昆虫纲:无翅亚纲——古颌目、缨尾目。亚纲:有翅亚纲,古翅目——蜻蜓目和蜉蝣目。门:新翅目:亚门:直翅目和蜉蝣目(=小翅目:蜉蝣目、蜉蝣目、等翅目、螳螂目、蝼蛄目、革翅目、直翅目、竹节虫目、螳螂目、茧蜂目、蟠翅目),亚门:半翅目(=副翅目):伪翅目、虱目、缨翅目和半翅目。昆虫目及其所含重要经济科的鉴别特征、一般生物学、习性和栖息地(续)。新翅目亚门,脉翅目组-鞘翅目:捻翅目、大翅目、尖翅目、脉翅目和鞘翅目,全翅目组长翅目、蚤目、双翅目、毛翅目、鳞翅目,膜翅目组:膜翅目。IV. 昆虫生态学丰度的基本概念-模型与现实世界。种群增长基本模型-指数与逻辑模型。离散与连续增长模型。概念
Luteibacter 属是 Rhodanobacteraceae 科的一部分,属于变形菌门的 γ 亚纲。该科包含 17 个属,分别是 Aerosticca、Ahniella、Aquimonas、Chiayiivirga、Denitratimonas、Dokdonella、Dyella、Frateuria、Fulvimonas、Luteibacter、Oleiagrimonas、Pinirhizobacter、Pseudofulvimonas、Rehaibacterium、Rhodanobacter、Rudaea 和 Tahibacter,其中两个属尚未有效发表(Denitratimonas 和 Pinirhizobacter)[1]。Luteibacter 属由 Johansen 等人 [2] 基于 Luteibacter rhizovicinus DSM 16549 T 种建立。该属目前包含 5 个种,其中 3 个已有效发表:L. rhizovicinus DSM 16549 T [ 2 ]、L. yeojuensis DSM 17673 T [ 3 , 4 ]、L. anthropi CCUG 25036 T [ 4 ],以及 L. jiangsuensis [ 5 ] 和 L. pinisoli [ 6 ]。Luteibacter 属的成员分离自各种环境,例如根际土壤 [ 2 , 6 ]、温室土壤 [ 3 ] 和人体血液 [ 4 ]。它们被描述为具有运动能力的、需氧的革兰氏阴性菌,呈杆状,呈黄色。此外,它们是过氧化氢酶和氧化酶阳性和脲酶阴性的。迄今为止,Luteibacter 或甚至是 Rhodanobacterceae 相关噬菌体都是未知的。噬菌体或细菌噬菌体是感染细菌的病毒。虽然温和噬菌体可以整合到细菌基因组中,但溶菌噬菌体在感染后直接开始繁殖。温和噬菌体会将其整合的基因组与宿主基因组一起复制,从而产生原噬菌体和溶原性细菌。通过添加其遗传物质,原噬菌体可以提供新的能力,保护宿主免受相关和不相关病毒的感染 [ 7 ]。在之前的研究中,我们从位于德国哥廷根的一个富营养化池塘中分离出一种环境 Luteibacter sp. nov. 菌株。分离 Luteibacter 菌株作为预期模型菌株,以研究与细菌感染相关的局部病毒多样性。
简介在兽亚纲哺乳动物中,除了一些例外,胚胎是否会发育为雄性或雌性取决于 Y 染色体的存在与否 (Capel, 2017)。雄性携带一个 X 染色体和一个 Y 染色体,而雌性携带两个 X 染色体。这是两性之间最根本的遗传差异,也是众多研究的主题。从历史上看,Y 染色体的生物学功能一直被误解。从 20 世纪 50 年代开始,它被认为是一片遗传荒地,因为对人类谱系的研究只发现了常染色体或 X 连锁遗传的特征 (Stern, 1957)。1959 年,研究表明男性决定基因是 Y 连锁的,但这被认为是一条功能惰性染色体上的例外 (Ford et al., 1959; Jacobs and Strong, 1959)。当转录单位首次在 Y 染色体上被发现时(Agulnik 等人,1994 年;Arnemann 等人,1991 年;Page 等人,1987 年;Reijo 等人,1995 年;Salido 等人,1992 年;Sinclair 等人,1990 年),人们认为它们是其前常染色体祖先的失活痕迹(Marshall Graves,1995 年)。最近,“濒死”理论假设 Y 蛋白编码基因不断丢失,预示着 Y 染色体最终会丢失(Aitken and Marshall Graves,2002 年;Marshall Graves,2004 年)。我们现在知道,将 Y 染色体视为正在消失的遗传沙漠的观点是错误的。数十年的研究证明,除了控制男性性腺的性别决定外,Y 染色体对于精子发生的初始化、维持和完成也至关重要。在这篇综述中,我们首先描述了 X-Y 染色体对的进化历史,然后将其作为范例来了解 Y 染色体如何在哺乳动物中变得功能特化。我们以人类和小鼠为重点,讨论了 Y 染色体不仅仅是性别转换的早期证据,以及随后发现与精子发生有关的 Y 基因的努力。然后,我们强调了实验限制如何影响该领域的进展,并提出了丰富我们对 Y 染色体功能理解的方法。