摘要:信息物理系统 (CPS) 和物联网 (IoT) 设备由多种不同的协议处理。对这些设备的管理和连接往往会产生可用性和可集成性问题。这就需要一种能够促进不同平台和设备之间通信的解决方案。物联网 (WoT) 描述了事物之间的接口和交互模式,从而将自身从用于管理这些事物的底层协议及其实施策略中抽象出来。本文介绍了数字骰子的概念,它是物联网设备和 CPS 的抽象,能够利用微服务架构的优势,并受到数字孪生概念的启发。数字骰子是 WoT 领域的服务系统,它通过设备的特征来表示设备,因此不同的 WoT 描述模型会导致与特定事物相关的不同微服务。本文探讨了数字骰子的定义以及 WoT 事物描述模型与数字骰子之间的转换以及维持系统的架构。
摘要 在极其复杂和困难的过程和情况下做出正确的决策一直是一项关键任务,也是临床上的一项挑战,并导致了大量的临床、法律和道德惯例、协议和反思,以保证临床决策的公平、参与和最新途径。然而,过程和物理现象的复杂性、时间和经济限制,以及医学和医疗保健领域的进一步努力和成就,不断提高了评估和改进临床决策的必要性。本文探讨了所谓的人工智能驱动的决策支持系统 (AI-DSS) 的兴起是否以及如何挑战临床决策过程。首先,本文分析了 AI-DSS 的兴起将如何影响和改变临床中不同代理之间的交互模式。第二步,我们指出这些不断变化的互动模式也意味着信任条件的变化、透明度方面的认知挑战、代理的基本规范概念及其在具体部署环境中的嵌入,以及最终对(可能的)责任归属的影响。第三,我们得出关于临床 AI-DSS 的“有意义的人为控制”的进一步步骤的初步结论。
9 研究方法 126 9.1 定义研究问题和方法 128 9.1.1 您的研究是探索性的还是验证性的?129 9.1.2 您正在建立相关性还是因果关系?130 9.2 在定性、定量和混合方法中进行选择 131 9.2.1 用户研究 132 9.2.2 系统研究 133 9.2.3 观察性研究 134 9.2.4 人种学研究 136 9.2.5 会话分析 138 9.2.6 众包研究 139 9.2.7 单一主题研究 140 9.3 选择研究参与者和研究设计 141 9.3.1 研究设计 142 9.4 定义交互背景 144 9.4.1 研究地点 144 9.4.2 HRI 的时间背景 145 9.4.3 HRI 中的社会互动单位 146 9.5 为您的研究选择机器人 148 9.6 设置交互模式149 9.6.1 绿野仙踪 149 9.6.2 真实与模拟交互 150 9.7 选择适当的 HRI 措施 150 9.8 研究标准 152
摘要 在极其复杂和困难的过程和情况下做出正确的决策一直是一项关键任务,也是临床上的一项挑战,并导致了大量的临床、法律和道德惯例、协议和反思,以保证临床决策的公平、参与和最新途径。然而,过程和物理现象的复杂性、时间和经济限制,以及医学和医疗保健领域的进一步努力和成就,不断提高了评估和改进临床决策的必要性。本文探讨了所谓的人工智能驱动的决策支持系统 (AI-DSS) 的兴起是否以及如何挑战临床决策过程。首先,本文分析了 AI-DSS 的兴起将如何影响和改变临床中不同代理之间的交互模式。第二步,我们指出这些不断变化的互动模式也意味着信任条件的变化、透明度方面的认知挑战、代理的基本规范概念及其在具体部署环境中的嵌入,以及最终对(可能的)责任归属的影响。第三,我们得出关于临床 AI-DSS 的“有意义的人为控制”的进一步步骤的初步结论。
9 研究方法 126 9.1 确定研究问题和方法 128 9.1.1 你的研究是探索性的还是验证性的? 129 9.1.2 你是在建立相关性还是因果关系? 130 9.2 在定性、定量和混合方法中进行选择 131 9.2.1 用户研究 132 9.2.2 系统研究 133 9.2.3 观察性研究 134 9.2.4 人种学研究 136 9.2.5 会话分析 138 9.2.6 众包研究 139 9.2.7 单一主题研究 140 9.3 选择研究参与者和研究设计 141 9.3.1 研究设计 142 9.4 定义交互背景 144 9.4.1 研究地点 144 9.4.2 HRI 的时间背景 145 9.4.3 HRI 中的社会互动单位 146 9.5 为你的研究选择机器人 148 9.6 设置交互模式 149 9.6.1 绿野仙踪 149 9.6.2 真实与模拟交互 150 9.7 选择适当的 HRI 测量方法 150 9.8 研究标准 152
摘要。依赖一种具有单一交互模式的技术可能会使一些用户受益,但如果他们不愿意使用该模式,肯定会排除更多用户。解决方案就是在交互系统的初始设计中包含多种模式,使其更能适应更多用户的需求。包括多种模式可以迅速增加需要接收用户命令流的交互对象的数量。如果用户需要在家庭自动化环境中与多个工件交互,则尤其如此。在本文中,我们介绍了正在进行的多模式家庭自动化系统项目的总体架构。该系统依赖于一个名为 Firebase 的基于 Web 的数据库来交换用户输入并向多个工件发出命令。用户输入是使用智能手机和配备网络摄像头的计算机获取的。它们捕捉用户的触觉输入、语音短语、眼神注视以及头部姿势特征,如倾斜和面部方向。我们能够在数据库和不同的输入采集接口之间实现可靠的数据传输。作为系统原型设计的第一步,我们能够控制使用 Unity3D 软件开发的两个独立游戏界面。
为了简化人力资源管理并降低成本,现在越来越多的控制塔被设计为远程控制,而不是直接植入机场。这个概念被称为远程控制塔,它提供了一种“数字”工作环境,因为跑道上的视图是通过位于实际机场的摄像头远程广播的。这为研究人员和工程师提供了开发新颖交互技术的可能性。但这项技术依赖于视觉,视觉主要用于向操作员提供信息和交互,而现在视觉已经变得超负荷。在本文中,我们专注于设计和测试依赖于人类听觉和触觉的新型交互形式。更准确地说,我们的研究旨在量化基于空间声音和振动触觉反馈的多模态交互技术对改善飞机定位的贡献。应用于远程塔环境,最终目的是增强空中交通管制员的感知并提高安全性。在模拟环境中,通过涉及 22 名空中交通管制员,比较了三种不同的交互模式。实验任务是通过两种可见性条件,利用听觉和触觉定位不同空域位置的飞机。在第一种模式(仅空间声音)中,声源(例如飞机)具有相同的放大系数。在第二种模式(称为音频焦点)中,
摘要:影视场景重建是影视制作过程中的重要环节,对影片的视觉效果和观众的观影体验有着决定性的影响。利用三维重建技术自动获取自然场景三维几何结构的建模方法,可以摆脱传统三维建模繁琐的人工交互模式,使三维建模过程更加简单便捷。本研究尝试将计算机辅助设计(CAD)和机器视觉技术应用到影视场景重建中,旨在保证模型精度的同时降低模型复杂度,从而提高影视场景重建的整体效率。研究还引入了一种基于小波变换(WT)的评估函数来评估影视场景重建的质量。与WT模型相比,本文提出的改进算法显著提高了图像处理效率,减少了处理时间。此外,通过引入光照和纹理信息,重建模型具有更高的真实感,为观众提供身临其境的观影体验,从而提高观影体验的质量。研究成果在影视场景重建的各个阶段发挥了至关重要的作用,为影视制作带来了更高的价值和更广阔的创作空间。
摘要:为了提高效率,人机和人机交互必须以多模态的理念进行设计。为了允许在多种不同的设备(计算机、智能手机、平板电脑等)上使用多种交互模式,例如使用语音、触摸、注视跟踪,并集成可能的连接对象,必须在系统的不同部分之间建立有效且安全的通信方式。当使用协作机器人 (cobot) 共享同一空间并在执行任务期间非常靠近人类时,这一点就更为重要。本研究介绍了使用 MQTT 协议的协作机器人在虚拟(Webots)和现实世界(ESP 微控制器、Arduino、IOT2040)中的多模态交互领域的研究工作。我们展示了如何高效地使用 MQTT,为系统的多个实体提供通用的发布/订阅机制,以便与连接的对象(如 LED 和传送带)、机械臂(如 Ned Niryo)或移动机器人进行交互。我们将 MQTT 的使用与之前几项研究工作中使用的 Firebase 实时数据库的使用进行了比较。我们展示了协作机器人和人类如何共同完成“挑选-等待-选择-放置”任务,以及这在通信和人体工程学规则方面意味着什么,包括健康或工业问题(残疾人和远程操作)。
人工智能 (AI) 的进步使得运输行业可以设想出现具有一定自主性的系统,该系统可以根据用户的需求不断发展,从驾驶辅助到替代驾驶。2020 年 10 月,法国国家铁路公司首次在实际运行条件下部分自主运行 BB 27000 货运机车,具有全自动加速和制动功能 [15]。2020 年 6 月的另一项首创成果是空客利用机载图像识别技术成功实现了 A350 飞机的滑行、起飞和降落 [1]。航空系统自动化程度的提高使我们能够考虑在减少飞行员工作量的同时提高安全性,并有助于朝着由单个飞行员与人工智能团队合作操作的驾驶舱的方向发展。然而,在两名人类操作员之间,他们的分工和合作方式可能会根据情况而改变。例如,在复飞或故障管理飞行期间,可以决定更换飞行员。取代第二名飞行员的人工智能系统必须部署自适应自动化,以适应可能发生的角色分配变化,也就是说,根据情况或人类表现的变化,人类和机器之间可能必须共享或交换功能 [7]。