机场是至关重要的国家资源。它们在人员和货物运输以及区域、国家和国际贸易中发挥着关键作用。它们是国家航空系统与其他交通方式的交汇点,也是联邦管理和监管空中交通运营的责任与拥有和运营大多数机场的州和地方政府的作用相交叉的地方。研究对于解决常见的运营问题、采用其他行业的适当新技术以及将创新引入机场行业都是必要的。机场合作研究计划 (ACRP) 是机场行业开发创新短期解决方案以满足其需求的主要手段之一。2003 年,TRB 特别报告 272:机场研究需求:合作解决方案基于联邦航空管理局 (FAA) 赞助的一项研究,确定了对 ACRP 的需求。ACRP 对机场运营机构共同存在且现有联邦研究计划未充分解决的问题进行应用研究。它仿照成功的国家公路合作研究计划和交通合作研究计划。ACRP 开展机场各学科领域的研究和其他技术活动,包括设计、建设、维护、运营、安全、安保、政策、规划、人力资源和行政管理。
本文探讨了技术在改善土地登记和管理系统方面的关键作用,强调了法定和习惯土地法的整合。最近的技术进步极大地改变了土地管理,提高了效率和透明度,减少了财产纠纷。该研究利用对现有文献和案例研究的全面回顾来评估地理信息系统 (GIS)、区块链和数字数据库在土地登记中的应用和有效性。GIS 技术因其在土地划界和冲突预防方面的精确性而受到关注,而区块链则因提供安全、透明的土地登记维护方法而闻名,这有助于减少欺诈和未经授权的更改。此外,本文还研究了技术在解决土地纠纷中的作用,特别是在习惯土地权与法定法律相交叉的情况下。探讨了数字平台在解决纠纷方面的有效性,评估了它们提供更方便、更有效的解决土地相关冲突的方法的潜力。目的是全面了解当代技术如何加强土地登记和管理系统,从而实现更强大、更公平的土地治理。研究结果和建议特别相关
问题是由于参考量子计算的高复杂性,状态的高密度以及预测性质在状态交叉和圆锥形相交附近的事实并不平滑。3,我们在这里解决了激发态性能低平滑度的影响。特征函数和特征值对应于所谓的绝热表示。国家通过其电子能量对每种核构型进行排序,从而导致势能表面(PESS)。虽然绝热状态可能会退化,但如果它们具有相同的多重性,它们永远不会真正跨越。电子能量和其他特性是高度弯曲和无差异的。绝热基础的低平滑度是ML回归的主要问题。使用允许状态交叉的平滑绝热基础,似乎是一种自然解决方案,如何提高ML效率。两个代表通过几何学的统一转换连接。不幸的是,找到无生命的基础本身就是一个重大问题。虽然仅通过对角度化就可以从绝热的基础上获得绝热基础,但逆程序是高度复杂的,因为没有唯一的定义糖尿病基础。即使是拟合4-6的过程,甚至是最新的方法,通常都需要有关系统以及大量手动工作和昂贵计算的专家知识。基于
在《人工智能的白人性》一书中,Cave 和 Dihal (2020) 描述并解释了工程师和流行文化中人工智能的白人性。通过观察人形机器人表面的白色材料、聊天机器人和虚拟助手 (VA) 的白人声音,以及互联网和(主要是美国)电影电视中的库存图片中所描绘的人工智能的白种人特征,作者问道:为什么人工智能主要被描绘成白人?Cave 和 Dihal 给出了三个答案。人工智能的白人性可能反映了 (1) 其创造者的白人性; (2) 欧洲中心主义将智能描绘成白人; (3) 白人希望有色人种变得不再必要,即使是仆人。Cave 和 Dihal 的工作对不断扩展的种族主义和人工智能文献做出了重要贡献(例如,参见 Atanasoski & Vora,2019 年;Benjamin,2019 年;Noble,2018 年,Precarity Lab,2020 年,Rhee,2018 年)。像 Cave 和 Dihal 那样揭露人工智能的白人本质很重要。更大的人工智能去殖民化项目也是如此,其中认识到种族偏见是其中的一部分(参见 Mohamed、Png 和 Isaac,2020 年)。为了响应他们“进一步调查”他们的解释的呼吁,我提供了一个交叉的
摘要:商业航空是目前最安全的交通方式之一;然而,人为失误仍然是航空事故和事件的主要原因之一。进一步提高飞行安全性的一个有希望的途径是神经人体工程学,这是一种神经科学、认知工程和人为因素交叉的方法,旨在创造更好的人机交互。眼动追踪技术允许用户通过深入了解飞行员的注意力分布和潜在的决策过程来“监控监控”。在本立场文件中,我们确定并定义了一个由四个阶段组成的框架,逐步将眼动追踪系统集成到现代驾驶舱中。第一阶段涉及地面飞行员培训和飞行性能分析;第二阶段提出将机载凝视记录作为“黑匣子”记录器的额外数据;第三阶段描述了基于凝视的驾驶舱适应,包括警告和警报系统,最终,第四阶段预言了基于凝视的飞机适应,包括飞机接管权力。我们通过描述我们本可以通过眼动追踪避免的事件或事故来说明这四个步骤的潜力。还提出了每个阶段集成的预计里程碑以及一些实施限制的列表。我们相信,该领域的研究机构和工业参与者都将受益于将眼动追踪系统框架集成到驾驶舱中。
摘要:商业航空是目前最安全的交通方式之一;然而,人为失误仍然是航空事故和事件的主要原因之一。进一步提高飞行安全性的一个有希望的途径是神经人体工程学,这是一种神经科学、认知工程和人为因素交叉的方法,旨在创造更好的人机交互。眼动追踪技术允许用户通过深入了解飞行员的注意力分布和潜在的决策过程来“监控监控”。在本立场文件中,我们确定并定义了一个由四个阶段组成的框架,逐步将眼动追踪系统集成到现代驾驶舱中。第一阶段涉及地面飞行员培训和飞行性能分析;第二阶段提出将机载凝视记录作为“黑匣子”记录器的额外数据;第三阶段描述了基于凝视的驾驶舱适应,包括警告和警报系统,最终,第四阶段预言了基于凝视的飞机适应,包括飞机接管权力。我们通过描述我们本可以通过眼动追踪避免的事件或事故来说明这四个步骤的潜力。还提出了每个阶段集成的预计里程碑以及一些实施限制的列表。我们相信,该领域的研究机构和工业参与者都将受益于将眼动追踪系统框架集成到驾驶舱中。
建筑结构的响应以多尺度运动学为特征,其复杂关系及其对工程荷载响应的影响仍未完全了解,因此需要进一步研究。更确切地说,缺乏能够提供多尺度数据的实验方法仍然是一个关键问题。本文介绍了对定向能量沉积制造的薄壁拉胀金属晶格进行的压溃试验的实验和数值分析。这项工作重点关注发生在 (a) 晶胞微观尺度和 (b) 对应于均质连续体的宏观尺度上的两尺度应变局部化。感兴趣的结构被定义为 2D 拉胀线框的挤压,并允许应用专门用于识别两个考虑尺度上的运动学的改进的数字图像相关方案。具体而言,通过跟踪晶格交叉的变形来研究微观运动学,而从虚拟晶胞角的运动推导出宏观应变。结果表明,晶格的整体弹塑性响应完全由特定位置的塑性铰链形成所驱动,从而导致特征变形模式,并最终导致相邻晶胞的集体行为。配套有限元计算与实验结果非常吻合,因此能够评估建模假设、晶胞几何形状、应变率和几何缺陷对建筑材料整体响应的影响。
人体中的大多数细胞通过称为有丝分裂的过程进行繁殖,在此过程中,DNA 自我复制,复制染色体,最终形成具有相同遗传物质的新细胞 (Sadler, 2018)。有丝分裂过程负责所有体细胞的复制。然而,性细胞以不同的方式繁殖,即通过减数分裂。首先,46 条染色体开始像有丝分裂一样复制自身。但在细胞完成分裂之前,会发生一个称为交叉的关键过程。染色体对对齐,DNA 片段交叉,从染色体对的一个成员移动到另一个成员,本质上是“混合”了 DNA。因此,交叉会产生独特的基因组合 (Sadler, 2018)。由此产生的细胞仅由 23 条单个未配对的染色体组成。这些细胞被称为配子,专门用于有性生殖:男性是精子,女性是卵子。卵子和精子在受精时结合,产生受精卵,即合子,它有 46 条染色体,形成 23 对,一半来自亲生母亲,一半来自亲生父亲。每个配子都有独特的遗传特征,据估计,个体可以产生数百万个遗传不同的配子(美国国家医学图书馆,2019 年)。
摘要。天然鸡是产生新的优质和生产菌株的潜在遗传来源。需要作为选择程序的基础数据,以提高天然鸡的遗传质量。这项研究旨在估算当地印尼鸡的定量性状的遗传性和遗传相关性。所使用的材料是四种本地鸡系的杂物,杂交和相互交叉的后代:白色,卢里克,战争和兰巴内。观察到的特征是体重(BW),身体高度(BH),身体长度(BL),身体圆周(BC),机翼长度(WL),喙长(BEL),头圆周(HC),大腿 - 斜长(TSL)和大腿周长(TC)。ANOVA和ANCOVA用于根据每个笼子/笔的交配线来估计遗传力和遗传相关性。交配线显着影响了所有测得的特征(p <0.05)。BW获得了最高的遗传力(H 2 = 0.25,中等类别)。除了BEL和HC以外,BW与所有其他特征之间发现了阳性遗传相关性。总而言之,可以考虑进行早期选择,因为它具有最高的遗传力和阳性遗传相关性与其他与体型有关的特征。关键字:身体测量,Gallus fordayus(Linnaeus,1758),
摘要:向上转换纳米颗粒(UCNP)具有独特的非线性光学特性,可以在显微镜,传感和光子学中利用。然而,形成具有较大填充分数的UCNP的高分辨率纳米和微分简单仍然具有挑战性。此外,人们对纳米颗粒模式化学的形式如何受粒径影响有限。在这里,我们使用形成新离子链接的配体或在UCNP之间(uviolet(uv),eleton- beam(e -elethir)(e -beam)(e -beam)(e -beam)和附近(nir)和附近(nir -nir)和附近(nir -nir)(nir)和附近(nir -extrare)(extrife)(ybem extruared(e -beam),我们探索了6-18 nm tm 3+ - ,yb 3+ /tm 3+ - 和yb 3+ /er 3+基于yb 3+ /er 3+的UCNP。 我们研究UCNP大小对这些图案方法的影响,发现6 nm UCNP可以用紧凑的离子配体进行图案化。 相比之下,对较大的UCNP进行构图需要长链,可交叉的配体,这些配体可提供足够的颗粒间距,以防止在膜铸造时进行不可逆的聚集。 与使用可交联液体单体的方法相比,我们的图案方法限制了与沉积在薄膜中沉积的UCNP上的配体的交联反应。 这种高度局部的照片 - /电子引发的化学能力可以制造具有高分辨率的密集包装的UCNP图案(约为1μm,紫外线和NIR暴露; <100 nm,具有E型束)。 我们的上转换nir光刻方法证明了将廉价连续波激光器用于胶体材料的高分辨率2D和3D光刻的潜力。我们探索了6-18 nm tm 3+ - ,yb 3+ /tm 3+ - 和yb 3+ /er 3+基于yb 3+ /er 3+的UCNP。我们研究UCNP大小对这些图案方法的影响,发现6 nm UCNP可以用紧凑的离子配体进行图案化。相比之下,对较大的UCNP进行构图需要长链,可交叉的配体,这些配体可提供足够的颗粒间距,以防止在膜铸造时进行不可逆的聚集。与使用可交联液体单体的方法相比,我们的图案方法限制了与沉积在薄膜中沉积的UCNP上的配体的交联反应。这种高度局部的照片 - /电子引发的化学能力可以制造具有高分辨率的密集包装的UCNP图案(约为1μm,紫外线和NIR暴露; <100 nm,具有E型束)。我们的上转换nir光刻方法证明了将廉价连续波激光器用于胶体材料的高分辨率2D和3D光刻的潜力。沉积的UCNP模式保留了它们的上转换,雪崩和照片处理行为,可以在模式的光学设备中利用这些行为,以用于下一代UCNP应用程序。