5.2(a)在此模型中,我们将根据训练数据中最接近的树的类别对一棵新树进行分类。这高度取决于培训数据的选择。如果我们将数据集分为两半,并为这两个数据集中的每个数据集制作k = 1的最邻居模型,那么我们很可能会在两个模型上获得非常不同的决策界限,因为我们将预测基于单个训练数据点。这意味着我们在模型中有很大的差异。至于偏见:是高还是低取决于我们认为仅地理位置是否足以确定树类型的信息。如果是这种情况,则偏差很低,因为1-NN模型可以描述非常灵活的映射(在这种情况下,从“位置”到“树类型”)。但是,如果有有关模型中未使用的功能中可用的树类型的相关信息,则可以将其视为偏见,这是由于“真实”输入输出关系的模型不足。
说明交叉验证的放松套索,人工神经网络(ANN),渐变机('xgboost'),随机森林('Randomforestsrc'),倾斜随机('aorsf'),递归分区('rpart')或步骤WISE WISE RECLISTION模型。交叉阀排出样品(导致嵌套交叉验证),或使用Bootstrap排除外部样品来评估和比较这些模型之间的性能与表格或图形均值预示的结果。校准图也可以是基于(外部嵌套)交叉验证的(外部嵌套)或引导程序(从包中)样本的。对于某些数据集,例如,当设计矩阵不完全排名时,“ glm-net”可能会在拟合轻松的Lasso模型时具有很长的运行时间,这是从我们的经验中,当我们的经验与许多预测变量和许多患者一起将COX模型拟合到数据时,这使得很难从Glmnet()或Cv.glmnet()中获得解决方案。调用glmnet()和cv.glmnet()时,我们可以通过“路径= true”选项来纠正这一点。在glmnetr包中,路径= true的方法默认情况下是按照。When fitting not a relaxed lasso model but an elastic-net model, then the R- packages 'nestedcv' < https: //cran.r-project.org/package=nestedcv >, 'glmnetSE' < https://cran.r-project.org/ package=glmnetSE > or others may provide greater functionality when performing a nested CV.
摘要 — 本研究的目的是通过微波辐射计对风暴和热带系统演示时间实验 (TEMPEST-D) CubeSat 任务和全球降水测量微波成像仪 (GMI) 上的降水系统的观测进行交叉验证。本文的目的有两个:首先,展示 TEMPEST-D 和 GMI 观测之间的一致性;其次,展示合并 TEMPEST-D 和 GMI 观测时增强时间采样的潜力。采用了两种交叉验证方法。第一种交叉验证方法是使用先验时空约束定量比较 TEMPEST-D 和 GMI 对降水系统的亮度温度 (TB) 观测。对比分析表明,两种仪器的TB观测值具有相似的概率分布,平均绝对差为2.9 K。第二种交叉验证方法是定量比较TEMPEST-D和GMI TB对热带气旋系统的观测结果。本对比研究分析了三个风暴案例。分析表明,TEMPEST-D和GMI TB观测中的风暴结构和强度相似,总体平均相关系数(r)为0.9。与单独使用GMI数据相比,结合TEMPEST-D和GMI TB对飓风系统的观测可将采样频率提高2.5倍。
摘要:在被动 BCI 研究中,一种常见的方法是在相对较长的试验期间收集感兴趣的心理状态数据,并将这些试验划分为较短的“时期”,以作为分类中的单个样本。虽然众所周知,在这种情况下使用 k 倍交叉验证 (CV) 会导致心理状态可分离性的估计不可靠(由于来自同一试验的样本存在自相关),但 k 倍 CV 仍在被动 BCI 研究中广泛使用和报告。尚不清楚的是 k 倍 CV 在多大程度上歪曲了真正的心理状态可分离性。这使得很难解释使用它的研究结果。此外,如果清楚地知道问题的严重性,也许更多的研究人员会意识到他们应该避免它。在这项工作中,一个新颖的实验探索了类内样本之间的相关程度如何影响通过 k 倍 CV 估计的基于 EEG 的心理状态分类准确性。将结果与真实值 (GT) 准确度和“块级”CV(k 折的替代方法,旨在缓解自相关问题)进行了比较。还探讨了诸如真实类别可分度以及使用的特征集和分类器等因素。结果表明,在某些条件下,k 折 CV 使 GT 分类准确度增加高达 25%,但块级 CV 低估了 GT 准确度高达 11%。我们建议,在单受试者分析中,应尽可能减少来自同一次试验的样本数量,并报告 k 折和块级 CV 结果。
人工神经网络(ANN)如今被广泛应用,对其性能提升的研究也在持续进行。ANN 的一个主要目标是具有较高的泛化性能,这可以通过验证来估计。集成有助于提高泛化性能,但如果训练数据集的大小有限,集成的验证通常在计算上成本很高。因此,本论文在交叉验证过程中引入了快捷集成,其中对多个验证输出取平均值以估计集成的泛化性能。为了评估该方法,使用两个不同的分类问题数据集,将快捷集成的验证性能与单个模型和实际集成的验证和测试性能进行了比较。结果表明,在验证过程中,快捷集成比单个模型能更好地估计集成的泛化性能,并且可以近似实际集成的验证性能。因此,快捷集成可以在交叉验证期间提供一种成本较低的集成验证方法。
关于混合动力飞机的研究数量正在稳步增加,因为这些配置可以降低运营成本并降低对环境的影响,而这些配置比传统飞机要低。然而,由于缺乏实际混合动力飞机的参考数据,设计工具和结果很难验证。本文通过对比两种独立开发的尺寸确定方法的假设和结果,分析了开发或实施混合动力飞机设计工具时必须验证的关键点。选择一架现有的 19 座通勤飞机作为基线测试案例,并使用两种设计工具来确定该飞机的尺寸。然后,根据混合动力推进技术调整飞机的尺寸。这适用于并联、串联和全电动动力系统架构。最后,进行敏感性研究,以评估混合动力飞机设计的基本假设和方法的有效性。发现这两种方法都可以预测参考飞机的最大起飞质量 (MTOM),误差小于 4%。预测各种(混合)电动配置的 MTOM 和有效载荷范围能量效率的最大差异分别约为 2% 和 5%。本研究的结果证实了这两种方法的正确制定和实施,并提供了可用于对设计工具进行基准测试的参考数据集。
[19] 分类器。基本上,此实现的目标是提高 DT 分类器的效率。此分类器的学习率为
所提方法的计算成本取决于我们需要计算 ˜ π i 的观测总数,因此在大多数情况下,计算 ˜ π 将占主导地位。这使得了解这些成本与似然函数 P 中的参数总数(而不是模型中的参数总数)和后验抽取总数 S 的关系变得很重要。表 1 列出了所提出的不同近似值的总体成本。计算完整的 PSIS-LOO 的成本为 O(nPS),因为对数似然的评估与 P 是线性的,即与 WAIC 的复杂度相同,但常数更大。可以根据特定似然做出不同的权衡,其中近似成本范围从最便宜的 plpd 到最昂贵的 WAIC/TIS(具有大量后验抽取 S)。 plpd 仅计算一次对数似然,而完整的 WAIC/TIS 方法需要计算 S 次。