摘要:如今,车辆中的内燃机被电动机取代,让位于电动汽车,从而降低了环境影响,较高的效率和降低温室气体的排放。电动汽车的动力总成是其最突出的子系统,电池和牵引逆变器是关键组件。因此,由于其相关性,两个组件的设计方面的进步至关重要。在本文中,与传统的两级动力总成设计相比,分析了通过将模块化电池库与多级NPC牵引逆变器拓扑结合使用的动力总成设计方法实现的潜在好处。分析了几个方面:模块化,复杂性,电池包装平衡,逆变器损耗,电动机交流电压谐波失真,电动机通用模式电压和可靠性。尤其是,根据选定的设计方案的比较研究,基于模块化电池组和多级技术的拟议设计方法显示,逆变器损失的可能减少高达55%,电动机电动机总谐波扭曲高达65%,在RMS平均电压电压中最多可减少75%。
光伏系统主要应用于独立光伏系统和并网光伏系统,过去,由于生产率较低,光伏组件成本较高,但现在随着生产率的提高,成本开始下降。因此,与独立系统相比,并网光伏系统受到广泛青睐[4]。在并网光伏系统中,逆变器用于连接光伏系统和电网。逆变器从光伏系统的直流输入产生所需的交流输出电压,而传统逆变器产生两级输出电压,在转换过程中存在一些问题,例如更高的谐波失真、开关频率、dv/dt应力和滤波器要求在输出侧更为重要,因此成本增加[5]-[6]。多级逆变器 (MLI) 在可再生能源应用中起着至关重要的作用,可产生所需的输出交流电压,从而提高效率、减少谐波并降低损耗。然而,在基本的 MLI 中,所需的组件和开关数量更多
超声波电源(发电机)将 50/60 Hz 电压转换为高频电能。此交流电压施加到转换器内的圆盘状陶瓷压电晶体上,使它们随着极性的每次变化而膨胀和收缩。这些高频纵向机械振动被探头(喇叭)放大,并以交替的膨胀和压缩声压波的形式传输到液体中。压力波动导致液体分子内聚力分解,将液体拉开并产生数百万个微气泡(空腔),这些气泡在低压阶段膨胀,在高压阶段剧烈内爆。随着气泡破裂,内爆点会产生数百万个微观冲击波、微喷射流、涡流和极端压力和温度,并传播到周围介质。尽管这种称为空化的现象仅持续几微秒,并且每个气泡释放的能量很小,但内爆空腔产生的累积能量极高,是超声波槽中产生能量的许多倍。
SolaGrid ESS 系列 SolaGRID ESS 10 SolaGrid ESS 20 可用能量存储容量 @ 50% DOD 10.92 kWh @ C10 12.23 kWh @ C20 18.53 kWh @ C10 20.97 kWh @ C20 电池容量 705 Ah @ C100 1190 Ah @ C100 电池型号 6 PVV 660 8 PVV 1200 电池化学成分 阀控铅酸凝胶(防溢) 电池排列 24 x 2 V 电池串联 系统电压 48 VDC 额定循环寿命 2950 @ 50% DOD 连续交流功率(25°C 时的标称值) 4.6/5/6 kW – 独立版本 5 kW – 电网耦合版本 额定交流频率 50 Hz(45 – 65 Hz)额定交流电压 230 V (172.5 – 264.5 V) 最大交流输入功率 12 kW – 独立版本 5.7 kW – 电网耦合版本 工作温度范围 -20°C – 45°C(风扇通风)
超声波电源(发电机)将 50/60 Hz 电压转换为高频电能。此交流电压施加到转换器内的圆盘状陶瓷压电晶体上,使它们随着极性的每次变化而膨胀和收缩。这些纵向振动被探头(喇叭)放大,并以交替的高压和低压超声波形式传输到液体中。压力波动将液体分子拉开,形成数百万个微气泡(空腔),这些气泡在低压阶段膨胀,在高压阶段猛烈内爆。随着气泡破裂,内爆点会产生数百万个冲击波、微流、涡流以及极端压力和温度。尽管这种称为空化的现象仅持续几微秒,并且每个气泡释放的能量很小,但产生的能量累积量却非常高。该过程是自我刺激的,因为内爆的气泡会为气泡的形成创造新的位置。传递的高剪切能量在探针尖端附近最大,并且随着距离尖端的距离增加而减小。
行为已被利用来将直流电压测量的精度提高五个数量级。基于超导约瑟夫森结阵列的最先进的精密电压标准系统现在可以提供量子精确、内在稳定、可编程的电压,直流电压的幅度大于 10 V,合成交流电压(如正弦波和任意波形)的幅度高达 2 V rms。已经开发出各种测量技术,用于音频范围内的交流测量应用和 60 Hz 功率计量。我描述了约瑟夫森电路和测量技术的主要发展,并总结了它们在电压计量应用中的当前性能和局限性。特别是,我强调使用基于量子的系统,即使它们产生看似低不确定性和可重复的结果,也不能保证测量的准确性。最后,我简要总结了如何利用量子精确的任意波形合成通过测量水三相点处电阻器的约翰逊噪声来测量玻尔兹曼常数,以及如何利用基于量子的约翰逊噪声温度计实现实用的电子主温度标准。
摘要。在过去的 30 年里,计量实验室利用约瑟夫森效应的量子行为大大改进了电压计量。以下文章回顾了约瑟夫森电压标准研究和开发的历史和现状。具体来说,将详细解释具有量子精度的电压标准的技术和性能,以及它们对各种电气计量应用的影响,主要是直流和交流电压测量。将介绍约瑟夫森效应的物理原理,并讨论基于量子的电气标准的重要性。将详细解释传统约瑟夫森电压标准的运行及其在直流应用中的使用,包括对最重要的结果的描述。本文的后面部分描述了最近将约瑟夫森效应应用于交流电压和其他电气计量应用的努力。已经开发出先进的电压标准系统,可提供新功能,例如稳定、可编程的直流电压和量子精确的交流波形合成。本文将介绍这些系统的超导技术和集成电路设计。两种不同的系统大大提高了音频电压和电力计量的测量精度。
可连接电池数量 1 最大充电功率/最大放电功率3) 7500 W / 6000 W 9000 W / 7200 W 10600 W / 10600 W 交流连接 额定功率(230 V、50 Hz 时) 5000 W 6000 W 8000 W 10000 W 最大视在交流功率 5000 VA 6000 VA 8000 VA 10000 VA 标称交流电压 3 / N / PE;220 V / 380 V 3 / N / PE;230 V / 400 V 3 / N / PE; 240 V / 415 V AC 电压范围 156 V 至 277 V AC 电网频率 / 范围 50 Hz / 45 Hz 至 55 Hz 额定电网频率 / 额定电网电压 50 Hz / 230 V 额定输出电流 3 x 7.3 A 3 x 8.7 A 3 x 11.6 A 3 x 14.5 A 最大输出电流 3 x 7.6 A 3 x 9.1 A 3 x 12.1 A 3 x 15.2 A 额定功率下的功率因数 / 可调位移功率因数 1 / 0.8 过激至 0.8 欠激 馈入线路导体 / 连接线路导体 3 / 3 效率 最大效率/欧洲效率 98.2 % / 97.3 % 98.2 % / 97.5 % 98.2 % / 97.8 % 98.1 % / 97.5 % 并网模式下的输出(交流备份) 备用负载的最大可连接功率 13800 W 备用负载的最大输出电流 3 x 20 A 离网模式下的输出(交流备份) 额定功率 1 ~ /3 ~(230 V、50 Hz 时) 1660 W / 5000 W 2000 W / 6000 W 2660 W / 8000 W 3330 W / 10000 W 最大最大交流视在功率 5000 VA 6000 VA 8000 VA 10000 VA 输出功率/输出视在功率 < 5 分钟 6000 W / 6000 VA 7200 W / 7200 VA 12000 W / 12000 VA 输出功率/输出视在功率 < 10 秒 10000 W / 10000 VA 12000 W / 12000 VA 标称交流电压 3 / N / PE; 230 V / 400 V 交流电网频率 50 Hz 切换至备用操作的时间 30 毫秒至 10 秒(可调) 保护装置 输入侧断开点(PV DC) ● 接地故障监控/电网监控 ● / ● 直流反极性保护/交流短路电流能力/电气隔离 ● / ● / —
供电频率是交流电压和电流在正向峰值和反向峰值之间振荡的每秒周期数 (赫兹) 的度量。Essential Energy 配电系统供电的标称频率为 50 Hz (赫兹)。Essential Energy 不控制供电频率,也不能保证频率符合任何标准。频率由发电机自动维持,只要发电和负载之间保持平衡,频率就会稳定在 50 Hz 或非常接近 50 Hz。国家电力规则规定的“正常工作频带”设定为 49.85 Hz 至 50.15 Hz。有时会超出这些水平,在极少数情况下,如果频率偏差过大,供电可能会中断。除非由于电网持续过度的频率变化而导致大面积供电中断,否则大多数客户的设备不会受到频率变化的影响。Essential Energy 的目标是将 Essential Energy 所了解的超出国家电力规则所规定的标准的频率偏移报告给 AEMO。嵌入式发电机频率设置的指导包含在新南威尔士州服务和安装规则中。低频不得低于 48Hz,超频不得高于 52Hz。
如图 2-1 所示,串式逆变器中有三个主要电源块。第一级是单向 DC/DC 转换器级,可将可变的串输出转换为适用于下一级的稳定高压 DC 链路,第二级是双向 DC/DC 功率级,第三级是双向 DC/AC 逆变器级。对于单相系统,直流总线电压通常为 400V DC 。对于三相系统,直流总线电压约为 800V DC 甚至更高,可达 1500V DC 。第一个 DC/DC 级还能够对整个串执行最大功率点跟踪 (MPPT)。它只是通过改变整个串的电压和电流来搜索最大功率。然后,该直流总线电压由 DC/AC 逆变器功率级转换为电网电压电平的交流电压。在当今的系统中,AC/DC 被构建为双向 PFC/逆变器,以允许连接到电池储能系统的 DC/DC 功率级运行,并允许双向对 ESS 进行充电和放电。