为了估计嘈杂的中尺度量子 (NISQ) 时代设备上的分子基态特性,基于变分量子特征求解器 (VQE) 的算法因其相对较低的电路深度和对噪声的抵抗力而广受欢迎。9,10 这导致了一系列成功的演示,涉及在当今的量子设备和模拟器上计算小分子的分子基态能量。4,6,11 – 22 然而,仅仅估计分子基态能量不足以描述许多涉及某种形式的电子激发的有趣化学过程。23 例如,准确模拟化学现象,如光化学反应、涉及过渡金属配合物的催化过程、光合作用、太阳能电池操作等,需要准确模拟分子基态和激发态。此类系统的电子激发态通常具有很强的相关性,因此需要使用复杂的量子化学理论来准确描述它们。在过去的几十年里,在这方面已经开发了许多方法。 24 – 32 运动方程耦合团簇 (EOM-CC) 26 方法最初由 Stanton 和 Bartlett 开发,是一种常用的例子,通常用于计算分子激发态特性,例如激发能
Present Address: Jimmy Elias, Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 606037, USA Present Address: Jane J. Rosin, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA Present Address: Amanda J. Keplinger, Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 606037, USA目前的地址:Alexander J. Ruthenburg,《分子遗传学和细胞生物学》,芝加哥大学,芝加哥,伊利诺伊州606037,美国,美国
许多炎症关节疾病与CD10蛋白的表达相关,CD10蛋白在炎症和疼痛传播信号中起很大作用。这种促炎性机制是人类肌肉骨骼组织中各种关节的关节软骨降解的主要指标。CD10在间充质干细胞(MSC)中的表达与其免疫调节和软骨保护作用直接相关。因此,该项目着重于开发基于适应性的生物传感器,该生物传感器将检测CD10表达而不会扰动样品。适体是一个小的单链核酸分子,可以折叠成独特的结构,从而使它们能够高特异性与各种分子蛋白靶标结合。这使他们能够检测出大量的高和低丰度分子。该项目的第一步是使用称为SELEX(指数富集对配体的系统演变)的过程为CD10开发高亲和力适体。我们从一个初始的单链RNA库开始,该库包含大约10 14个不同的序列。将RNA文库与溶液中的CD10蛋白一起孵育。然后使用硝酸纤维素滤光片将蛋白-RNA复合物与未经膜的RNA分离。然后,在对RNA进行逆转录和PCR之前,我们将蛋白质与RNA分开。第一轮之后的最终产物包含与CD10蛋白结合的ssRNA分子。我已经完成了2轮SELEX,并有令人鼓舞的结果。此过程将重复大约10次,使我们能够识别与CD10高亲和力结合的RNA适体。这是开发适体CRISPR传感器的关键步骤,因为某些样品的CD10表达较低。
摘要:通过使用绿色技术(例如超临界二氧化碳(SCCO 2)),亲和力聚合材料的设计和开发是一个迅速发展的研究领域,在各种领域,包括分析化学,药品,生物医学,能源,食物,食物和环境补救,包括大量不同领域的应用。这些亲和力的聚合物材料专门设计用于与靶分子相互作用,表现出高亲和力和选择性。SCCO 2的独特特性,它们既具有液体和气体样的特性又具有可访问的临界点,它为聚合物的合成和处理提供了环境友好,高效的技术。SCCO 2中亲和力聚合材料的设计和合成涉及多种策略。通常,将官能团或配体掺入聚合物矩阵中允许与目标化合物进行选择性相互作用。根据亲和力和选择性,单体类型,配体和合成条件的选择是材料性能的关键参数。此外,在这些策略中通常使用了与共聚合和表面修饰的分子印记,从而增强了材料的性能和多功能性。本综述旨在概述使用SCCO 2的亲和力聚合物材料设计的关键策略和最新进步。
许多肿瘤学抗体 - 药物结合物(ADC)由于摄取对健康组织的摄取引起的剂量限制毒性而未能证明诊所的功效。我们开发了一种利用ADC亲和力来利用ADC亲和力的方法,以使用两种抗中质 - 上皮过渡因子(MET)单克隆抗体(MABS)具有高亲和力(HAV)或低亲和力(LAV)(LAV)与单甲基甲甲基甲硫酸甲硫酸甲素(MaUristatin E(Ma))。LAV-ADC的估计Ti至少比HAV-ADC大3倍。在异种移植模型中,LAV-和HAV-ADC显示出相似的抗肿瘤活性水平,而111个DTPA研究显示HT29肿瘤中的ADC量相似。尽管LAV-ADC的血液清除率比HAV-ADC慢约2倍,但使用HAV-ADC观察到更高的肝毒性。虽然SPECT/CT 111 IN-和124 I-DTPA的发现表明HAV-ADC在正常组织中的积累较高,并且在正常组织中具有快速的清除率,但插入性微拷贝(IVM)研究证实,HAV MAB在肝辛西尔内皮细胞内积累,而LAV MAB则没有。这些结果表明,降低MET结合亲和力为Met-ADC提供了更大的Ti。降低ADC的亲和力降低了靶标介导的药物处置(TMDD),以在正常组织中表达的MET,同时向肿瘤摄取/递送。这种方法可以应用于多个ADC,以改善临床结果。
CD8 T 细胞反应效率主要取决于 TCR 与肽-MHC 的结合强度,即 TCR 结合亲和力。肿瘤免疫学的当前挑战在于评估疫苗方案,选择亲和力最高的肿瘤特异性 T 细胞,提供针对肿瘤细胞的最大免疫保护和临床益处。在这里,我们研究了肽和 CpG/佐剂剂量对疫苗诱导的 CD8 T 细胞质量的影响,与治疗的黑色素瘤患者的结合亲和力和功能反应有关。我们使用 TCR-pMHC 结合亲和力测量结合表型和功能分析,对 7 名接种了不同剂量 Melan-A/ELA 肽(0.1 mg vs. 0.5 mg)和 CpG-B 佐剂(1-1.3 mg vs. 2.6 mg)的患者的代表性肿瘤抗原特异性 CD8 T 细胞克隆(n = 454)进行了全面研究。高剂量肽疫苗接种有利于 Melan-A 特异性 CD8 T 细胞的早期和强效体内扩增和分化。一致地,从这些患者产生的 T 细胞克隆在每月注射 4 次疫苗(4v)后迅速显示出增加的 TCR 结合亲和力(即缓慢的解离率和 CD8 结合独立性)。相比之下,使用低剂量肽或高剂量 CpG-B 需要每月注射 8 次疫苗 (8v) 以富集具有高 TCR 结合亲和力和低 CD8 结合依赖性的抗肿瘤 T 细胞。重要的是,CD8 结合独立的疫苗诱导的 CD8 T 细胞表现出增强的功能亲和力,达到最大功能的平台期。因此,在超过某个 TCR 结合亲和力极限后,肽/CpG/IFA 疫苗接种后的 T 细胞功能效力可能不会进一步提高。我们的结果还表明,虽然高剂量肽疫苗接种诱导了具有更高功能能力的 Melan-A 特异性 CD8 T 细胞的早期选择,但持续的连续疫苗接种也促进了这种高亲和力 T 细胞。总体而言,对 T 细胞结合亲和力的系统评估可能有助于优化疫苗设计以提高临床疗效。
图 1. 受刺激 T 细胞中的 IL2R 激活途径表示。IL2R 的不同构象会影响其对 IL2 的亲和力(低亲和力 CD25 或高亲和力三聚体受体)。IL2 还可以通过 CD122/CD132 二聚体影响信号传导。此外,形成受体的 CD25 分子是来自相邻细胞(反式)还是同一细胞(顺式)决定了高亲和力异三聚体受体的命名惯例。途径的激活由 Janus 激酶 1 和 3(JAK1 和 JAK3)磷酸化启动,进而刺激 STAT5 二聚化,或磷酸肌醇 3 激酶 (PI3K) 和大鼠肉瘤病毒致癌基因同源物 (Ras) 途径,最终磷酸化效应激酶 p70 S6K 和 MAPK。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年8月22日发布。 https://doi.org/10.1101/2023.08.21.554147 doi:Biorxiv Preprint
摘要:噬菌体展示是一种多功能方法,常用于发现针对疾病相关生物标志物的肽。该技术的主要优势在于亲和力选择(也称为生物淘选)的简便性和成本效益,可用于识别新肽。虽然识别具有最佳结合亲和力的肽相对简单,但所选肽的药代动力学通常被证明是次优的。因此,仔细考虑实验条件,包括选择使用体外、原位或体内亲和力选择,对于生成具有高亲和力和特异性并表现出理想药代动力学的肽至关重要。具体而言,体内生物淘选或体外、原位和体内亲和力选择的组合已被证明会影响肽和肽结合纳米粒子的生物分布和清除。此外,还必须考虑肽和纳米粒子之间性质的显著差异。虽然肽的生物分布主要取决于生理化学性质,并且可以通过氨基酸修饰进行改变,但纳米颗粒的大小和形状也会影响吸收和分布。因此,优化所需的药代动力学特性应是生物淘选策略中的一个重要考虑因素,以便能够选择有效靶向体内生物标志物的肽和肽结合纳米颗粒。
