如图7所示HCP协同融合智能制造系统由三部分组成:1)人机界面与装备自主控制系统;2)基于数字孪生的人机协同分析决策系统;3)基于知识图谱的人机物理数据融合系统。人机界面与装备自主控制系统包括智能感知、智能分析决策、智能自主控制、人机界面和物理系统。基于数字孪生的人机协同分析决策系统包括基于数字孪生和新一代信息技术的人机协同学习提升、精准执行、自主决策和实时分析。
摘要:晕动症 (MS) 是一种与恶心、头晕和其他形式的身体不适等症状相关的综合症。自动驾驶汽车 (AV) 很容易诱发 MS,因为用户不适应这种新型的交通方式,获得的有关自身车辆轨迹的信息较少,并且可能从事与驾驶无关的任务。由于 MS 敏感性特别高的人在使用 AV 时可能会受到限制,因此对 MS 缓解策略的需求很高。事实证明,乘客的预期对症状有调节作用,从而减轻 MS。为了找到有效的缓解策略,对人机界面 (HMI) 的原型进行了评估,该界面向乘客呈现 AV 下一次转向的预期环境光提示。在一项对测试跑道上的 AV 中的参与者 (N = 16) 进行的真实驾驶研究中,根据试验期间 MS 的增加情况评估了 MS 缓解效果。通过呈现预期的环境光提示,在高度敏感的子样本中发现了 MS 缓解效果。事实证明,HMI 原型对于高度敏感的用户是有效的。未来的迭代可以缓解现场环境中的 MS 并提高 AV 的接受度。
SLD:所以,在舰队中内置的驾驶舱中,每个平台都有一个基本驾驶舱。这个驾驶舱建立在人机界面上,这个人机界面为你提供了第二种能力,即融合“引擎”,它将 F-35 上的核心战斗系统整合在一起。那么,请谈谈融合“引擎”以及融合“引擎”与驾驶舱的关系。
控制器等方面提出了工效学设计要求。 从国外组织来看,国外涉及船舶驾驶室操控界面的标准主要包括:国际海事组织IMO 于2000 年制定的标准《船桥设备和布局的工效学指南》( MSC/ Circ.982 ) [16] ,内容涉及船桥(包括驾驶室)布置、 作业环境、工作站布置、报警、控制界面、信息显示、 交互控制等7 个方面的驾驶室人机界面设计要求。国际海上人命安全公约SOLAS 于2007 年制定的标准《船桥设计、设备布局和程序》( SOLAS V/15 ) [17] , 内容涉及驾驶室功能设计、航海系统及设备设计、布置、船桥程序等,其显着特点是对于驾驶室团队管理作出相关要求,包括船桥程序、船员培训等。 从各个国家来看,美、英等西方国家在军事系 统工效学方面的研究已具有较大的规模,也制定了 一系列军用标准。美国军方军事系统的人机工程学设计准则包括“ 人机工程系统的分析数据” ( MIL.H.sl444 ) [118] , “ 军事系统人机工程学设计准则” ( MIL.STD.1472F ) [19] ,以及1999 年修订的“ 人机工程过程和程序标准” ( MIL.STD.46855A ) [20] 。 MIL-STD-1472 的第一版发布于20 世纪60 年代( 1968 年),在第二次世界大战期间,当时各交战国竞相发展新的高性能武器装备,但由于人机界面设计上的不合理,人难以掌握这些新性能的武器,导致发生了许许多多事故。因此,二次大战结束后,首先美国陆航部队(以后成为美国空军)和美国海军建立了工程心理学实验室,进行了大量的控制器、显示器等的人因素研究,获得了大量的数据,并开始将这些研究成果汇编成手册或制订成各种有关人类工程学的标准或规范。 MIL-STD-1472 就是在这样的时代背景下产生 的。该标准是为军用系统、子系统、设备和设施制定通用人类工程学设计准则,由美国陆军、海军和空军等多个单位评审,美国国防部批准,并强制性要求美国国防部所有单位和机构使用,具有较广泛的影响。 该标准在控制 - 显示综合和控制器章节有针对控制器 通用设计规则的阐述。 美国在船舶人机工程领域的投入力度也较大,不但开展了一系列的船舶人机工程专项试验,而且颁布了多项船舶人机工程设计标准和文件,主要侧重于研究人机环境对船舶的战斗力的影响。其中, ASTMF 1166—88 海军系统装备和设施的人因素工程设计标准是一个通用型标准,涵盖了控制、显示和告警、楼梯和台阶、标识和计算机、工作空间布局等海军设计的所有元素[21 ] 。 英国国防部于2005 年组织建立的船舶SRDs 系统,对船舶人机界面涉及的多方面问题进行梳理和整合,将人机界面研究作为船舶系统设计的一个重要环节,以提高人机界面设计在船舶项目中的优先级别。 英国国防部 2009 年的 MARS 项目计划,将早期人机 界面设计干预纳入到舰艇设计系统中,并委任专业公
态势感知 (SA) 可以定义为对一定时间和空间范围内环境元素的感知、对其含义的理解以及对其近期状态的预测。因此,人机界面最重要的人为因素问题是操作员保持态势/系统意识的能力。人机界面并不总是直观的,这是一个既定事实。非直观的“不透明”界面会导致操作复杂性,这通常会迫使操作员分配更多注意力以保持对情况/系统状态的充分心理模型。这成为态势感知丧失、系统性能下降以及最终导致人为错误和安全故障的温床。
4.3.2 .态势感知 态势感知 (SA) 可以定义为对一定时间和空间内环境元素的感知、对其含义的理解以及对其近期状态的预测。因此,人机界面最重要的人为因素问题是操作员保持态势/系统感知的能力。人机界面并不总是直观的,这是一个既定事实。非直观的“不透明”界面会导致操作复杂性,这通常会迫使操作员分配更多注意力以保持对情况/系统状态的充分心理模型。这成为态势感知丧失、系统性能下降以及最终导致人为错误和安全故障的温床。
16. 摘要《人为因素设计指南》(HFDG)提供了参考信息,以协助选择、分析、设计、开发和评估新的和改进的联邦航空管理局(FAA)系统和设备。初版是 FAA 技术中心人为因素实验室制定的标准草案。1996 年版将初稿文件转换为指南,并纳入了 1994 年和 1995 年从选定的审阅者那里收集的专家意见。它主要关注 FAA 地面系统和设备,例如由航空设施管理和维护的系统和设备。本指南涵盖了与自动化、维护、人机界面、工作场所设计、文档、系统安全、安全、环境和人体测量学有关的广泛人为因素主题。本文档还包括广泛的人机界面指南。
classnk.or.jp › pdf › research PDF 作者:T SUZUKI · 被引用次数:3 — 作者:T SUZUKI · 被引用次数:3 为了判断这一点,人机界面 (HMI)... 无人机概念的心理障碍甚至更高,而这些障碍...