信息技术流程描述和人机界面 (HMI) 这一新流程是利用端到端数字流程集成开发的。实际上,这意味着测量数据管理由空中客车计量软件套件提供,并与产品数据管理和空中客车操作系统相链接。在这个系统中,通过摄影测量、激光跟踪器和光电技术获得的数据与技术人员易于使用的 HMI 完全集成。用户体验已证实,以操作员为中心的 HMI 降低了操作员的复杂性,如图 2、3、4 和 5 所示。
简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 运输 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 命名法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 结构钢支撑。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 索具底部部分。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.....................3 连接多单元底部部分 .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...4 均衡器封堵板:多单元单元 ..................。。。。。。。。。。。。。。。。。。。。。。。。...........6 封箱胶带的应用 ...........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 索具上部部分。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 延长升降机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 3 部分发货。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 套管部分索具。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8
重点陈述 本次评估的目的是确定高级索具工的熟练程度,高级索具工拥有丰富的专业知识,通常比索具工多 5 年以上的经验。索具是他们的主要全职职责,使他们能够始终做出明智的决定,并辨别正确和错误的做法。他们善于解决其他人可能遇到的问题,展示他们的熟练程度。他们的综合知识基础包括:
本文的主要目的是全面概述和分析物质制品与具身心智之间的各种关系。本文的第二个目标是确定制品设计和使用中的一些趋势。首先,根据其功能特性,我确定了具身心智所采用的四类制品,即 (a) 具身制品、(b) 感知制品、(c) 认知制品和 (d) 情感制品。这些类别可以重叠,因此一些制品属于多个类别。我还确定了我们在与制品交互时使用的一些技术(或技能)。确定这些制品和技术类别使我们能够绘制出具身心智与制品世界之间关系的图景。其次,在确定了人工制品和技术的类别之后,本文概述了人工制品设计和使用的一些趋势,重点关注神经假体、脑机接口和个性化算法,引导用户走向特定的信息消费认知路径。
NAST 正在举办一场具有成本效益的创新咖啡馆设计大赛,该大赛面向具有类似设计和建造具有成本效益结构经验的建筑/工程公司和个人建筑师征集参赛作品。这也将为不同的个人提供一个平台,展示他们在具有成本效益的创新咖啡馆方面的设计技能和创新理念。
我们提出了虚拟社区,一个旨在支持具身人工智能研究的社交世界模拟平台,具有源自现实世界的大规模社区场景。虚拟社区引入了两个关键特性,以生成人工智能来丰富虚拟社交世界:可扩展的 3D 场景创建,支持在任何位置和规模生成广阔的室内外环境,解决了具身人工智能研究缺乏大规模、交互式的开放世界场景的问题;具有扎实角色和社会关系网络的具身代理,这是第一个在社区层面模拟具有社交联系的代理,同时也具有基于场景的角色。我们设计了两个新颖的挑战来展示虚拟社区提供了试验平台来评估具身代理在开放世界场景中的社交推理和规划能力:路线规划和竞选活动。路线规划任务考察代理推理社区中的时间、位置和工具的能力,以便规划日常生活中快速、经济的通勤。竞选活动任务评估了代理作为社区新成员探索和与其他代理建立联系的能力。 。 我们对几个基线代理进行了这些挑战的评估,并展示了当前方法在解决开放世界场景中体现的社会挑战方面的性能差距,我们的模拟器旨在解决这些挑战。 我们计划开源这个模拟,并希望虚拟社区能够加速这个方向的发展。 我们鼓励读者在 https://sites.google.com/view/virtual-community-iclr 上查看我们的模拟演示。
读者可能会对术语 DMDB(专用主、专用保护)的缺失感到好奇。我们第一次听到这个术语是在 2016 年新墨西哥州阿尔伯克基举行的 ITRS 上。介绍该术语的作者没有提供定义。术语 DMDB 也用于 2016 年 EMBC 报告中,但同样没有提供具体定义。使用专用一词意味着绳索救援系统中的停滞(即专门分配给或用于特定服务或目的)。十多年来,许多绳索救援队一直在通过在初始边缘过渡后向保护线添加下降控制来改变他们的 SMSB 系统。而这些救援队一直在他们的主线操作中加入一个自启动组件,比如普鲁士绳。本质上,SMSB 是一种混合系统或绳索救援线管理的连续体——我们将在本文后面更深入地探讨这些细节。
具身智能 (EI) 是一个快速发展的领域,旨在解决有关机器智能本质的新想法。EI 模糊了人工智能和物理智能(分别为 AI 和 PI)之间的界限;它在系统的人工和自然组件之间创建了一个分散的界面。EI 旨在将自然生物中观察到的多模态和多尺度适应性融入机器中,从而为机器人技术提供一种全新的方法,让未来充满自主、有用和安全的机器。想象一个每台机器在形态和神经学上都是独一无二的世界。这样的技术将不受无意的意外(新环境)或有意的意外(对抗性攻击)的影响,因为没有两台机器会共享一个共同的致命弱点。想象一下,当机器一分为二时,会形成两个较小但不同的原始机器版本。想象一下,机器可以分解成独立组件群,并根据需要重新组合成一个物理整体。想象一下,在自主机器中,控制、驱动、感觉、通信、计算和动力之间没有明显的区别,这使得这些机器不受任何一个子系统完全失效的影响。这些机器可能还会包含生物和非生物组件,进一步结合生物和非生物世界的优点,模糊“我们”(人类)和“他们”(机器)之间的区别。
海量数据集和大容量模型推动了计算机视觉和自然语言理解领域的许多最新进步。这项工作提供了一个平台,使具身人工智能能够取得类似的成功。我们提出了 P ROC THOR,一个用于程序化生成具身人工智能环境的框架。P ROC THOR 使我们能够对任意大的多样化、交互式、可定制和高性能虚拟环境数据集进行采样,以在导航、交互和操作任务中训练和评估具身代理。我们通过 10,000 个生成的房屋样本和一个简单的神经模型展示了 P ROC THOR 的强大功能和潜力。在 P ROC THOR 上仅使用 RGB 图像训练的模型,没有明确的映射,也没有人工任务监督,在 6 个用于导航、重新排列和手臂操作的具身人工智能基准测试中产生了最先进的结果,包括目前正在运行的 Habitat 2022、AI2-THOR Rearrangement 2022 和 RoboTHOR 挑战。我们还通过在 P ROC THOR 上进行预训练(无需在下游基准上进行微调)在这些基准上展示了强大的 0-shot 结果,通常击败了访问下游训练数据的以前最先进的系统。
根据具身理论(包括具身、嵌入、扩展、演绎、情境和扎根认知方法),语言表征与我们与周围世界的互动有着内在联系,这反映在语言处理和学习过程中的特定大脑特征中。这篇共识论文从具身理论与非模态理论的原始竞争出发,探讨了一系列精心挑选的问题,旨在确定运动和感知过程何时以及如何参与语言过程,而不是是否参与。我们的研究领域非常广泛,从具身语义的神经生理特征(例如事件相关电位和场以及神经振荡)到语义处理和语义启动对具体和抽象词的影响,再到第一和第二语言学习,最后,使用虚拟现实来检查具身语义。我们的共同目标是更好地理解运动和感知过程在语言理解和学习所代表的语言表征中的作用。我们达成共识,基于该领域开展的开创性研究,未来的发展方向是通过承认具体和情境语言和语义过程的多模态性、多维性、灵活性和特质来提高研究结果的外部有效性。