按照类似的原理,路径损耗也受仰角的影响,因此 α UX 可能会随着无人机仰角 θ X 的增加而减小。这样,G2G 链路,其中 θ X = 0 ,
摘要:由于空间粒子的吸收和散射,卫星信号在传播过程中的质量会下降。对于高信息速率卫星技术,这种质量下降会严重影响接收到的信息。这种质量下降还取决于链路和大气损耗。雨水和云对 10 GHz 以上频率的信号衰减有重大影响。在雨水和凝结云层期间,低仰角传输会增加有效路径长度并导致接收信号电平下降。频率 f 和仰角 θ 等发射信号参数的变化会显著影响大气损伤。本文研究了在 10-50 GHz 频率范围内较低仰角下自由空间损耗、雨水衰减和云衰减的影响。链路计算方法用于确定自由空间损耗。ITU-R Rec. P.837-4 和 ITU-R Rec. P.676-11 分别用于计算雨水和云衰减。使用 MATLAB 软件绘制并制表这三种损耗的结果。
ELM-2026BF 是一款高精度 3D 战术防空雷达,可探测和跟踪空中目标,包括:低 RCS 无人机和无人驾驶飞机、直升机和战斗机。该雷达在 X 波段运行,采用固态有源电子扫描阵列 (AESA) 技术。该雷达为双模雷达,可提供空中监视和跟踪,并为防空炮火控提供精确的距离、方位角和仰角。该雷达通过数字波束形成 (DBF) 采用多波束仰角覆盖,并通过天线旋转采用 360° 方位角覆盖。
后坐系统 后坐系统包括液压后坐制动器和液压气动回收器。后坐制动器通过旋转阀装置中的可变孔口节流油,使后坐质量静止。一对补偿管允许在后坐和跳动冲程期间系统内的体积发生变化,并允许油在热量的影响下膨胀。从任何仰角射击后,复原器将枪返回到完全跳动位置。后坐系统使用切断齿轮来减少更高仰角下的后坐长度。因此,无需为枪挖后坐坑。
波动模型 旋转 I 速度 PAR:+ – 40 至 + – 250 节 ASR:+ – 40 至 + – 400 节 仪器覆盖量 PAR 覆盖方位角 30 度;仰角 -1 至 +7 度 高度最小高于地面 100 英尺拦截点范围晴朗模式下 20 海里;降雨模式下 15 海里更新率每秒 1 次 ASR 覆盖方位角 360˚;仰角 0˚ 至 20˚;高度 0 至 8,000 英尺范围晴朗模式下 30 海里;雨天模式下 19 海里 更新率 每 5 秒一次(天线旋转 60 rpm) SSR 覆盖范围 360˚ 范围 60-250 海里,取决于所选询问器 更新率 每 4.8 秒一次(天线旋转 12.5 rpm) 飞机目标处理 PAR 目标 方位角 50 个绘图/扫描;仰角 22 个绘图/扫描 ASR 和 SSR 目标 250 个绘图/扫描 可靠性 MTBCF 2212 小时 可维护性 MTTR 0.25 小时 定期维护每季度一次,2 小时。 天气处理整个雷达覆盖区域,3 个级别
1 炮盾 • 铝制外壳,用于对火炮部件进行防风雨、防弹和防生化防护。上部结构 [炮室] 在系统运行期间无人值守。 • 支撑检修门、系统通风、液压集管箱和与防护罩一体的减压缓冲器。 2 枪尾 • 固定炮管内的子弹以便射击,连接电动击针,并在射击时容纳爆炸压力。 3 炮口防护罩 • 提供动态外壳,覆盖和密封火炮的仰角弧,并为炮管和弹壳弹出门安装防风雨端口。 4 炮尾机构 • 液压活塞驱动的连杆,用于在射击或哑火事件后升高和降低枪尾和提取推进剂所需的部件。 5 炮管外壳 • 支撑炮管的后膛端。 • 安装后坐和反后坐缸,以及阀控气体喷射系统,以清除炮管中的残留气体。 6 炮架 • 为上部火炮提供底环和耳轴支撑。 • 安装传动机构和仰角动力驱动器、上部蓄能器系统、滑动组件和防护罩。• 为火炮的传动机构和仰角功能提供轴线。7 支架 • 为传动机构轴承和齿轮环的固定部件提供安装在甲板上的平台。8 托架 • 升至火炮仰角轴线,将垂直方向的弹药从上部提升机转移到火炮滑动装置的指向角,以便于后膛装填。9 滑动装置 • 火炮发射部件的主要组件,包括托架、枪尾盖和枪尾机构;火炮身管外壳;空壳提取器和托盘。• 安装火炮仰角轴线的耳轴;安装仰角齿轮扇形装置。
II 通信卫星:轨道和描述:卫星通信简史、卫星频段、卫星系统、应用、轨道周期和速度、轨道倾角的影响、方位角和仰角、覆盖范围和斜距、日食、轨道摄动、卫星在地球静止轨道上的位置