摘要 摘要 人类肢体或器官的丧失仍然是一个挑战,尤其是在人们不断依赖触摸屏和任务的世界中。因此,患者几乎无法承受和应对因这种丧失而遇到的越来越多的限制。现代手段和技术,如先进的人工部件,减少了对残疾或失去肢体或器官的患者的限制。例如,手部假肢为改善人体肢体的功能能力提供了强有力的工具,从而提高了使用者的生活质量。然而,使用假肢的患者仍然遇到许多问题,例如,遭受完整的肢体和背部疼痛、假肢系统成本高以及与假肢性能相关的困难、控制不佳和更新困难。基于上述问题,目标是设计一种由重量轻的重型塑料制成的 3D 仿生手臂。目的是使用伺服电机代替步进电机,以减少延迟和减轻重量。目的还在于设计一个基于人工智能 (AI) 的仿生手臂程序,该程序可以进行修改以用于未来的目的,例如添加新手势和优化系统控制。新设计包括 3D 打印手臂、控制设计、测试电机和 EMG 传感器、选择具有成本效益的部件、模拟和最终确定真实原型。结合直接执行运动机制和仿生假肢的全尺寸模型,该开发旨在用于上肢的医疗康复。实验结果包括开发一个真正的基于 AI 的系统来定制使用神经网络控制的手势。结果还包括保持 EMG 传感器的准确和干净的读数。此外,新的仿生假肢手臂确保性能不会延迟,模仿手的正常功能。结果还表明,我们的设计在成本效益方面超越了现有的设计,前提是在其他几个规格上它是可比的。设计灵活且基于人工智能控制。作为未来的展望,可以在新的基于人工智能的设计中测试更多的算法,并测试更多的手势。
近年来,随着微波加热,雷达和航空航天的持续发展,人们越来越关注微波炉吸收材料(MAM),并且其开发和应用越来越广泛。在民用用途中,微波炉被广泛用于通信,雷达检测和其他领域[1,2]。这不仅为人类活动提供了便利,而且还导致严重的电磁波吸收(EMA)污染和电磁干扰[3,4]。在军事中,微波雷达已在各个国家广泛使用,并已成为一种无处不在的反坦健康技术,该技术已成为与国家安全有关的重要问题[5,6]。因此,全世界的研究人员致力于研究新的妈妈,希望能有效地吸收EWA来解决上述问题。bionics是一种模拟设计技术系统中生物学原理的领域,旨在赋予人工系统具有相似甚至卓越的生物学功能[7,8]。通过显微镜技术的进步,已经揭示了有机体在视觉上出现“普通”但具有显着功能的生物具有复杂的微观结构。这些功能不仅源于原子或分子排列,而是源于“功能原始素”的顺序组装,该组件组成几个比分子和原子大的数量级[9-11]。如图1,仿生象征的物体包括各种生物,从动物和植物到人体器官[12]。bionics通过两个主要方面实现了其目标:结构性培训和功能性生物学。结构仿生学涉及代表生物体的宏观或微观体系结构以达到意外目的[13]。同时,功能仿生学模仿了生物体固有的机械,光学,声学,电气和磁能力。例如,荷叶叶子的微纳维尔乳头“乳头”结构,由蜡质材料组成,可以实现超氧化和自我清洁的特性[14]。另外,变色龙体内的鸟嘌呤颗粒的周期性排列形成天然光子晶体,表现出动态的颜色范围[15],说明了功能仿生的丰富性和复杂性。此外,值得注意的是,化学成分在仿生学中也起着作用,因为它通常决定了独特的特性
摘要 本文分析了高性能仿生手假肢设计中主要问题的解决途径,提出了设计时必须同时解决的主要任务。通过对当今常见的仿生手假肢的结构和工作原理的分析,发现其主要缺点,这些缺点要么与设计的不完善有关,要么与旨在提供触觉的信息处理以及用于形成仿生假肢元件控制信号的生物信号的选择和处理等有关。提出了仿生假肢结构开发的概念,该概念涉及将作者提出的基于内骨骼的假肢机电设计与触觉传感器以及特殊设计的 EMG 传感器和执行器相结合,它们根据物联网原理组合成一个网络,其中包括使用专门的信息支持来积累和处理这些信号,并基于人工智能和云技术元素的应用为假肢执行机构和执行器形成相应的控制信号。
本节根据 35 USC §287(a) 规定,通知 www.betabionics.com/us-patents/ 上列出的产品受一项或多项美国专利保护。每种产品还可能受一项或多项外国专利保护,并且可能正在申请其他专利。产品和美国专利列表可能并不全面,未列出的其他产品也可能受一项或多项专利保护。
iLet 永远不会停止学习,并且始终会适应您的胰岛素需求。它会随着您的胰岛素需求随时间变化而不断适应。如果您在最初几天遵循日常习惯,适应效果会最好。不要立即挑战 iLet - 它只知道输入的体重。它还不知道您的胰岛素需求的其他任何信息,并且对于大多数用户来说,一开始会比较保守。
摘要:Bionics是一个跨学科领域,结合了生物学和工程,以创建模仿或增强生物体功能的系统或设备。它涉及人造身体部位,假肢,植入物和其他可以恢复或增强由于受伤,疾病或先天性状况而丧失的身体能力的设备的设计和开发。在本文中,我们关注了当前的生物学研究主题,并讨论了牙科和修复学中生物学的潜力。I.引言对于及时恢复具有牙齿修复体的生理能力至关重要,因为牙齿缺陷和缺失会导致咀嚼功能障碍,营养摄入困难,颞下颌关节疾病,甚至心血管疾病。仿生学和假肢是相关的医学专业,重点是替代失去的生物学功能。被称为生物学的医学领域着重于改善或机械替代器官和其他身体部位的生理功能。仿生设备是假肢中使用的计算机或微处理器控制的零件,比上述纯机械替代方案在功能,安全性和移动性方面具有优势。Bionics是一个跨学科领域,结合了生物学和工程,以创建模仿或增强生物体功能的系统或设备。它涉及人造身体部位,假肢,植入物和其他可以恢复或增强由于受伤,疾病或先天性状况而丧失的身体能力的设备的设计和开发。1,7Bionics从自然世界中汲取灵感,经常模仿生物系统的结构和功能,以创建创新的技术解决方案。该领域已导致医疗技术,机器人技术和人类增强的重大进步,为改善生活质量和推动人类能力的界限提供了新的可能性。
嵌合抗原受体(CAR)设计的T细胞代表癌症的前线治疗。但是,当前的汽车T细胞制造方案不能充分再现免疫突触的形成。在此响应这种限制,我们开发了一个柔性石墨烯氧化物抗原呈递平台(GO-APP),该平台将抗体固定在氧化石墨烯上。通过对氧化石墨烯(GO-APP 3/28)上的抗CD3(αCD3)和抗CD28(αCD28)进行装饰,我们实现了显着的T细胞增殖。GO-APP 3/28与T细胞之间的体外相互作用紧密模仿抗原呈递细胞和T细胞之间的体内免疫突触。 这种免疫突触模仿的模仿表现出刺激T细胞增殖的高能力,同时保留其多功能性和高效力。 同时,它提高了CAR基因工程效率,与标准方案相比,CAR T细胞产生的增长超过五倍。 值得注意的是,GO-APP 3/28在T细胞中刺激了适当的自分泌白介素-2(IL-2),并克服了对外部IL-2补充的体外依赖,从而提供了与IL-2补充无关的培养基于T细胞的产物的机会。GO-APP 3/28与T细胞之间的体外相互作用紧密模仿抗原呈递细胞和T细胞之间的体内免疫突触。这种免疫突触模仿的模仿表现出刺激T细胞增殖的高能力,同时保留其多功能性和高效力。同时,它提高了CAR基因工程效率,与标准方案相比,CAR T细胞产生的增长超过五倍。值得注意的是,GO-APP 3/28在T细胞中刺激了适当的自分泌白介素-2(IL-2),并克服了对外部IL-2补充的体外依赖,从而提供了与IL-2补充无关的培养基于T细胞的产物的机会。
Triboelectric纳米生成器(Tengs)在为各种可穿戴设备获得可持续能源方面起着至关重要的作用。聚合物材料是量的重要组成部分。生物聚合物是适合Tengs的材料,因为它们具有降解性,自然采购和成本效果。在此,总结了常用生物聚合物和精心设计的仿生技术的最新进展。详细概述了天然橡胶,多糖,基于蛋白质的生物聚合物和其他常见的合成生物聚合物在Teng技术中的应用。根据其电力能力,极性变化和特定功能,讨论了每个生物聚合物的活性和功能层。还总结了特定生物聚合物的重要仿生策略和相关应用,以指导Teng的结构和功能设计。将来,对摩擦性生物聚合物的研究可能会着重于探索替代候选者,增强电荷密度和扩大功能。在本综述中提出了基于生物聚合物的tengs的各种可能应用。通过将生物聚合物和相关的仿生方法应用于Teng设备,Teng在医疗保健领域的应用,环境监测以及可穿戴/可植入的电子设备可以进一步促进。
由于进化,许多生物材料已经发展出不规则结构,从而具有出色的机械性能,例如高刚度重量比和良好的能量吸收。然而,在合成材料中复制这些不规则的生物结构仍然是一个复杂的设计和制造挑战。这里介绍了一种仿生材料设计方法,该方法将不规则结构描述为构建块(也称为瓷砖)和连接它们的规则的网络。合成材料不是一对一复制生物结构,而是以与生物材料相同的瓷砖分布和连接规则生成,并且结果表明这些等效材料具有与生物材料相似的结构与性能关系。为了演示该方法,研究了橙子的果皮,橙子是柑橘家族的一员,以其保护性和吸收能量的能力而闻名。聚合物样品在准静态和动态压缩下生成并表征,并显示出空间变化的刚度和良好的能量吸收,如生物材料中所见。通过量化哪些图块和连接规则在响应负载时局部变形,还可以确定如何在空间上控制刚度和能量吸收。
用仿生血管网络打印人体组织和器官越来越感兴趣。虽然可以将灌注通道嵌入到细胞和密集的细胞矩阵中,但它们目前不具有天然血管中发现的仿生结构。在这里,开发了在功能组织中的同轴牺牲写作(共旋),这是一种嵌入的生物印刷方法,能够在颗粒水凝胶和密度细胞内部的细胞水凝胶中产生分层分支,多层血管网络。同轴打印头的设计具有扩展的核 - 壳配置,以促进嵌入式生物打印过程中印刷的分支容器之间的稳健核心 - 壳和壳壳互连。使用优化的核壳墨水组合,由光滑肌肉细胞壳组成的生物模拟血管同轴印刷成由颗粒状基质组成的:1)透明的alginate Micropoparticles,2)牺牲性微粒胶原蛋白的spe虫,或者来自人类spertiacts spertiacs cardiac cardiac cardiac cardiac sperters sperters carderip衍生。仿生血管。重要的是,发现在灌注下成熟,同步打败并在体外表现出心脏效力的药物反应。这次进步开辟了新的途径,用于针对药物测试,疾病建模和治疗用途的血管化器官特异性组织的可扩展生物制造。
