在本文中,我认为混合仿生系统中的人工组件不起直接解释作用,即在模拟方面,在其所嵌入系统的整体背景中。更准确地说,我认为确定此类人工设备输出的内部程序,替代生物组织并连接到其他生物组织,不能用于直接解释它们所替代的生物组件的相应机制(因此不能用于解释确定此类仿生模型复制的整体生物或认知功能的局部机制)。我基于使用最小认知网格 (MCG) 进行这一分析,这是 Lieto (人工智能认知设计,2021) 中提出的一种新框架,用于对生物和认知启发的人工系统的认识论和解释地位进行排名。尽管缺乏来自人工组件的直接机械解释,但我认为混合仿生系统可以发挥间接解释作用,类似于使用整体结构设计方法(但包括部分采用功能组件)构建的一些人工智能系统所发挥的作用。特别是,生物系统部件的人工替换可以提供 i)在混合生物-人工系统整体功能背景下对该部件的局部功能说明;ii)对与此类人工设备相连的生物元素的结构机制提供整体见解。
摘要:细胞膜工程纳米粒子 (NPs) 在抗癌药物输送应用方面显示出巨大的潜力。原则上,任何类型的细胞的细胞膜都可以处理以获得纯化的细胞膜,该细胞膜可以自组装形成稳定且高度坚固的纳米囊泡。这些纳米囊泡保留了宿主细胞的脂质双层结构,并且在自上而下的方法中保留了许多表面生物标志物和蛋白质。有趣的是,纳米囊泡表现出长时间的血浆循环和明显的肿瘤特异性结合,这在很大程度上暗示了它们的仿生特性。许多先驱研究已经证明了它们能够封装不同化学复杂性的不同化疗剂和光敏剂,并以触发方式释放它们。此外,新型 NPs 系统已被开发用于癌症免疫治疗。该综述讨论了细胞膜衍生的纳米囊泡在不同形式的癌症治疗中的一些重要研究和应用,以及它们作为个性化纳米药物开发的潜力。
在本文中,我认为混合仿生系统的人工组成部分不起直接的解释作用,即,在模拟的术语中,在它们嵌入的系统的总体上。更准确地说,我声称确定这种人工设备的输出,替换生物组织并与其他生物组织相关的内部程序不能直接解释它们代替它们的生物组分的相应机制(因此,无法用来解释该本地机制来解释该生物学或认知的局部机制,以确定这种总体或认识性的模型。i对使用最小认知网格(MCG)的分析进行了这种分析,这是一个在Lieto中提出的新框架(人工思维的认知设计,2021年),以对生物学上和认知上平淡的人工系统的认识论和解释性状态进行排名。尽管缺乏人工组件的直接机械解释,但是我还认为,混合仿生系统可以具有与使用整体结构设计方法构建的AI系统相似的间接解释作用(但包括部分功能组件)。尤其是,生物系统部分的人工置换可以为i)在混合生物学 - 人工系统的整体功能和ii)全球洞察力的整体功能中提供该部分的局部功能说明,以实现与此类艺术元素相关的生物学元素的结构机制。
过去也曾出现过类似的 BCI。然而,这些 BCI 有局限性。用户可以按下按钮——这是一个不需要连续移动的简单动作。事实证明,使用这些 BCI 很难实现更复杂的动作。在何和他的团队的演示中,受试者通过精神控制机械臂跟踪光标。假手指能够像真手指一样连续跟踪光标。他说,该系统可以与用脑电图记录和无线电极编程的智能手机应用程序一起使用。这将消除对脑部手术的需要。
机器人技术的进步紧跟功能材料、传感、驱动和通信技术以及人工智能等领域的发展,这些技术共同使得机器人能够高度模仿生物系统的形态和功能。 [6] 例如,大面积触觉皮肤或电子皮肤 (e-skin) 的实现使得机器人能够像动物一样利用来自全身的触觉反馈在非结构化或杂乱的环境中工作。 [5,7] 同样,微型但功能强大的执行器和电子元件使得灵巧的手和敏捷机器人得以开发。 [8] 近年来,3D/4D 打印也为开发具有复杂形状和软结构的敏感机器人开辟了道路。 [9,10] 因此,机器人技术的进步紧跟电子硬件、先进材料和制造等其他领域的技术进步。然而,有一个关键领域,机器人技术似乎在很大程度上没有跟上技术趋势,即为机器人供电所需的能源。可靠的能源对于自主机器人的平稳运行至关重要,特别是在主电源不易获得的环境中。事实上,当今大多数应用都要求机器人具有自主性,因此,它们必须完全依靠电池作为电源。分析最新技术,我们注意到,尽管电池技术取得了重大进展,但在机器人采用先进能源解决方案方面并没有取得太大进展。[11]
传统上,NASA主要依靠泵送的单相液体系统来通过单相辐射器收集,运输和拒绝热量。在航天飞机轨道机上使用的热排斥系统由嵌入蜂窝结构中的250多个小的一维管组成。通过对流转移到管壁上,通过蜂窝结构进行传导,最后通过辐射到空间。NASA目前正在开发核电推进发动机,以供下一代航天器向火星及其他地区开发,这些航天器需要具有性能能力的热排斥系统要比当前系统提供的功能要好得多。加热管的起源可以追溯到60年来,但仍有新想法的余地。传统的热管由一个开放的绝热区域组成,一个网状灯芯衬在管壁的内部,有助于从冷凝器侧传输到蒸发器侧。在新墨西哥技术(NMT)开发的一种仿生,多功能概念具有一个由径向分级的相互连接的孔组成的结构,并且可以实现纵向的热管,以使热管允许辐射流动以及纵向流动。这种配置促进了从蒸发器末端到管壁的热对流,并在整个散热器侧面更均匀地散发热量。过去在NMT上使用具有仿生设计的样品进行的实验表明,在局部加热时,当流体通过闭环多孔层时,可能会引起热能的对流传输。持续调查的目的是突出仿生结构如何同时减少热排斥系统质量所需的热性能。关键词:仿生设计,热管,深空,灯芯层,
摘要 固体颗粒冲蚀是制造业、能源业、军事、航空等工程领域的常见现象,然而随着工业要求的不断提高,抗固体颗粒冲蚀材料的研发仍然是一个巨大的挑战。经过数十亿年的进化,许多天然材料表现出独特而卓越的抗固体颗粒冲蚀性能,这些材料通过多样化的策略实现了同样优异的抗固体颗粒冲蚀性能,这种抗性源于其微纳米尺度的表面结构和界面材料特性,为固体颗粒冲蚀的多种新解决方案提供了灵感。本文首先总结了近年来天然抗固体颗粒冲蚀材料研究的重要进展及其一般设计原理。根据这些原理,人们可以获得多种抗冲蚀结构。结合先进的微纳米制造技术,人们已经获得了多种人工抗固体颗粒冲蚀材料。然后,展望了抗固体颗粒冲蚀材料的潜在应用。最后,简要讨论了抗固体颗粒冲蚀材料面临的挑战和有望取得的突破。关键词:仿生材料、固体颗粒侵蚀、表面结构、微/纳米制造技术、应用
摘要:基于纳米颗粒的药物输送系统通过增强抗肿瘤药物的溶解度和稳定性来保持癌症治疗的希望。尽管如此,靶向不足和有限的生物相容性的挑战仍然存在。近年来,由于其出色的性状,包括精确的靶向,低毒性和良好的生物相容性,因此细胞膜纳米生物型药物脱粒系统已成为研发的焦点。这篇综述概述了细胞膜仿生纳米递送系统的分类和优势,提供了制剂的介绍,并评估了它们在癌症治疗中的应用,包括化学疗法,基因治疗,免疫疗法,光动力治疗,光疗治疗,光疗治疗和联合疗法。值得注意的是,该评论深入研究了各种细胞膜仿生纳米递送系统的挑战,并确定了未来进步的机会。拥抱细胞膜涂层的仿生纳米颗粒提供了一种新颖且无与伦比的肿瘤疗法大道。
近年来,随着微波加热,雷达和航空航天的持续发展,人们越来越关注微波炉吸收材料(MAM),并且其开发和应用越来越广泛。在民用用途中,微波炉被广泛用于通信,雷达检测和其他领域[1,2]。这不仅为人类活动提供了便利,而且还导致严重的电磁波吸收(EMA)污染和电磁干扰[3,4]。在军事中,微波雷达已在各个国家广泛使用,并已成为一种无处不在的反坦健康技术,该技术已成为与国家安全有关的重要问题[5,6]。因此,全世界的研究人员致力于研究新的妈妈,希望能有效地吸收EWA来解决上述问题。bionics是一种模拟设计技术系统中生物学原理的领域,旨在赋予人工系统具有相似甚至卓越的生物学功能[7,8]。通过显微镜技术的进步,已经揭示了有机体在视觉上出现“普通”但具有显着功能的生物具有复杂的微观结构。这些功能不仅源于原子或分子排列,而是源于“功能原始素”的顺序组装,该组件组成几个比分子和原子大的数量级[9-11]。如图1,仿生象征的物体包括各种生物,从动物和植物到人体器官[12]。bionics通过两个主要方面实现了其目标:结构性培训和功能性生物学。结构仿生学涉及代表生物体的宏观或微观体系结构以达到意外目的[13]。同时,功能仿生学模仿了生物体固有的机械,光学,声学,电气和磁能力。例如,荷叶叶子的微纳维尔乳头“乳头”结构,由蜡质材料组成,可以实现超氧化和自我清洁的特性[14]。另外,变色龙体内的鸟嘌呤颗粒的周期性排列形成天然光子晶体,表现出动态的颜色范围[15],说明了功能仿生的丰富性和复杂性。此外,值得注意的是,化学成分在仿生学中也起着作用,因为它通常决定了独特的特性
响应警报 • 根据第 4 节中的说明,露营者的高血糖和低血糖警报应保持“开启”状态。音量应设置在他们和/或营地人员可以听到的水平。• 始终阅读、响应和关闭 iLet 上的活动警报。可能需要确认警报才能恢复胰岛素给药。• 如果露营者不能独立排除警报故障,必须通知营地医疗团队或其他合格人员提供协助。高血糖(高血糖症) • 始终允许不受限制地获取水或无糖饮料和洗手间。• 仅当露营者有酮体并且血糖过高时才应遵循酮体行动计划。由于禁食、遵循“生酮”饮食和/或锻炼,在血糖正常时可能会出现酮体。• 如果露营者的血糖较高,但在 90 分钟内未超过 300,请确认以下情况: