电子产品功绩徽章是一个有趣的,基于STEM的功绩徽章,它将激发童子军从事电子产品的可能职业。侦察员将了解电容器,晶体管和电阻器,同时掌握数字技术的基本原理并演示如何构建控制设备电路。使用电子功能徽章使用,构建,更改或修复电子设备时,了解电子的行为并学习安全预防措施。
Starpharma 的 HER2 靶向 DEP ® SN-38 ADC 的抗癌活性在已建立的 HER2+ 人类癌症异种移植模型中得到证实,该模型利用了过度表达 HER2 的 SKOV-3 卵巢癌细胞系。HER2 靶向 DEP ® SN-38 ADC 和 Enhertu ® 在研究的第 1、8 和 15 天静脉注射 (IV),与盐水对照相比,显著抑制了肿瘤生长。在研究期间,HER2 靶向 DEP ® SN-38 ADC 的抗肿瘤作用在统计学上显著高于 Enhertu ® 的抗肿瘤作用 (p<0.0001)。 HER2 靶向 DEP ® SN-38 ADC 组的所有动物均存活至研究结束,与 Enhertu ® 和盐水对照组相比,HER2 靶向 DEP ® SN-38 ADC 治疗动物的生存率在统计学上显著更高(p<0.0002)。
摘要:柔性集成光子学是一项快速兴起的技术,在柔性光互连、共形多路复用传感、健康监测和生物技术领域有着广泛的应用前景。开发机械柔性集成光子学的一大挑战是集成光子电路中性能优越的功能组件。在这项工作中,基于多中性轴机械设计和单片集成技术,设计和制造了这种电路的几个基本柔性无源器件。波导的传播损耗计算为 4.2 dB/cm。此外,我们展示了用于 1.55 µ m 的微环谐振器、波导交叉、多模干涉仪 (MMI) 和马赫-曾德尔干涉仪 (MZI),它们都表现出优异的光学和机械性能。这些结果代表着向进一步探索完整的柔性光子集成电路迈出了重要一步。
摘要:柔性集成光子学是一项快速兴起的技术,在柔性光互连、共形多路复用传感、健康监测和生物技术领域有着广泛的应用前景。开发机械柔性集成光子学的一大挑战是集成光子电路中性能优越的功能组件。在这项工作中,基于多中性轴机械设计和单片集成技术,设计和制造了这种电路的几个基本柔性无源器件。波导的传播损耗计算为 4.2 dB/cm。此外,我们展示了用于 1.55 µ m 的微环谐振器、波导交叉、多模干涉仪 (MMI) 和马赫-曾德尔干涉仪 (MZI),它们都表现出优异的光学和机械性能。这些结果代表着向进一步探索完整的柔性光子集成电路迈出了重要一步。
这不是我的宣言。这不是我列出的圣母大学所有问题的清单,也不是关于世界应该如何发展的狂妄长篇大论。要阅读此类选集,请参阅最后一段。与任何机构一样,圣母大学是社会的反映,包括其贪婪、自私和自我保护的倾向。机构是由个人组成的,没有个人能免受偶尔的同情心缺失。利兹·福兰但组成这所学校的 95% 的名誉主编都是全国最有才华、最有爱心和最敬业的人。在任何机构中,少数成员可能会给其他人带来坏名声。圣母大学很幸运,其“害群之马”的比例比平均水平要小得多。
先进纳米材料因其出色的光电特性,受到学术界和工业界越来越多的关注(Liu et al.,2020)。近年来,人们致力于开发高性能纳米材料,这使得其在广泛的光电应用中具有巨大潜力(Kong et al.,2021;Niu et al.,2021),特别是在发光二极管 (LED) 和太阳能电池 (SC) 方面。我们非常高兴地推出这期题为“用于发光二极管和太阳能电池的先进纳米材料”的特刊。本期特刊从不同角度强调了材料-器件研究的主要意义,结合了现代实验方法和理论模拟。我们从这个令人兴奋的领域收集了 10 篇特色文章,涵盖了用于 LED 和 SC 开发的先进纳米材料的新兴概念、策略和技术。简化的有机 LED(OLED)结构和可行的制造工艺在照明中起着关键作用。 Xu 等人结合了超薄非掺杂发射纳米层(0.3 纳米),展示了低效率滚降和结构简单的 OLED。同时,Xie 等人通过使用含硼和氮原子的分子作为客体发射极,开发了溶液处理的蓝色热激活延迟荧光 OLED,其半峰全宽较窄为 32 纳米,获得高色纯度 OLED。另一方面,开发新型溶液处理的空穴注入材料对于高性能 OLED 至关重要。Zhu 等人合成了二硫化钼量子点(MoS 2 QDs)并展示了具有混合聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸盐)(PEDOT:PSS)/QDs 空穴注入层的绿色磷光 OLED。采用PEDOT:PSS/MoS 2 空穴注入层的OLED最大电流效率为72.7 cd A −1,比单一PEDOT:PSS的OLED高28.2%,表明以硫化物QD作为空穴注入层是实现高效OLED的有效方法。GaN基LED也是很有前途的照明和显示设备。Zhang等人从实验和数值两个方面系统地研究了台面尺寸减小对InGaN/GaN LED两个横向维度的影响,为设备小型化提供了见解。而Lu等人制作并展示了各种尺寸的应变减小微型LED,并研究了尺寸对光学特性和量子阱铟浓度的影响。他们的工作为实现微型LED的高功率性能提供了经验法则。另一方面,Liu等人对GaN基LED进行了系统的研究,提出了一种新的方法来降低应变,提高LED的效率。采用氢化物气相外延与激光剥离技术联合制备缓冲层,在双抛光蓝宝石衬底上制备了厚度约为250 μm的2英寸自支撑GaN衬底,为高功率GaN基器件提供了一条途径。
图 3. (a) XRD 和 (b) 扫描电子显微镜 (SEM) 图像,在 GC 电极上电沉积 HKUST-1,施加 -1.4 V 的恒定电位(相对于 Ag/AgCl)7200 秒。倒角立方体的平均直径为 855 ± 65 nm。图 (b) 显示略微缩小的图像,图 (cd) 显示电极上不同位置的放大图像。
C. L APEYRONIE 1*,MS A LFONSO 1,B. VIALA 2,J.-H. T ORTAI 1 1 格勒诺布尔阿尔卑斯大学、CNRS、CEA/LETI-Minatec、格勒诺布尔 INP、格勒诺布尔阿尔卑斯大学工程与管理学院、LTM、格勒诺布尔 F-38054、法国 2 格勒诺布尔阿尔卑斯大学、CEA、LETI、38000 格勒诺布尔、法国
乳腺癌和卵巢癌已成为全球女性癌症死亡的主要原因[1]。同时,酪氨酸激酶细胞膜受体的一种,人表皮生长因子受体2 (HER2) 已被证明在许多乳腺癌和卵巢癌中存在扩增和过表达[2]。在过去的几十年中,针对 HER2 受体的单克隆抗体技术得到了迅速发展,相应的抗体-药物偶联物 (ADC) 已被成功探索用于 HER2 靶向癌症治疗,即利用抗体作为载体,将细胞毒药物高效、选择性地递送到肿瘤细胞内[3-6]。然而,ADC 药物仍然存在一些不可避免的缺陷,例如体积大、制备复杂、偶联位点不特异性、组织穿透性差,这些都可能在一定程度上影响治疗效果[7-9]。为了突破这些局限性,人们开发了各种较小的蛋白质片段作为替代药物载体,如单体抗体 [ 10 ]、抗运载蛋白 [ 11 ]、DARPins(设计的锚蛋白重复蛋白)[ 12 ] 和纳米体 [ 13 ]。除这些候选分子外,亲和体是一种由 58 个氨基酸组成、形成三螺旋束的小亲和蛋白(6~7 kDa),由于其对大量靶蛋白或肽具有高亲和力而受到广泛关注 [ 14 – 16 ]。与抗体相比,亲和体分子具有几个潜在优势,例如由于体积小而能够快速组织穿透、皮摩尔亲和力具有高选择性,并且易于通过微生物发酵获得 [ 17,18 ]。更重要的是,原始亲和体序列中缺乏半胱氨酸,这为我们提供了将半胱氨酸引入序列中通过硫醇化学与有效载荷进行位点特异性结合的机会[19,20]。亲和体分子尺寸小,有利于组织渗透,但同时也导致肾脏快速清除。快速的肿瘤渗透和快速的血液清除性能使亲和体分子适用于各种医学成像应用,如正电子发射断层扫描(PET)成像[21,22]、光学和磁共振成像(MRI)[23,24]和荧光引导手术[25,26],但显然不适合癌症治疗[27]。最近,一些研究者尝试将亲和体分子与细胞毒药物结合,形成亲和体介导的靶向抗癌药物。例如,Jacek Otlewski 等人通过