这一年在理解最有用的介电和电静脉的放松剂类型铁电体方面已经取得了重大进步。很明显,原始的超透明模型只是对非常高温行为有效的第一个近似模型,实际上,尼贝特铅镁和PZT材料都是磁性自旋玻璃杯的紧密类似物。极性微区之间的相互作用会导致vogel-fulcher,例如放慢和冷冻,并提供对宏大域转变,滞后行为和耦合弹性响应的了解。
量子力学改变了我们对物理世界的看法,在过去的二十年中,物理系统的量化特征也已成为技术不同分支的资源[1,2]。尤其是,当计量学遇到量子机械时,就可以使用整个新的新特征来提高物理测量的精度,并构想新颖的量子增强方案以表征信号和设备[3-5]。相对论也改变了物理的范例,并发现了相关的技术应用[6]。因此,是否可以共同利用相对论和量子机械性能以提高物理测量的精度。在本文中,我们遵循了这一想法,并证明了范式相对论特征,重力时间扩张确实可能代表了可以与量子叠加一起使用的资源,以证明重力常数的估计或其变化。
○ 找工作 ○ 找主机 ○ 找资金 ○ 研究人员章程和守则 ○ 研究人员人力资源战略 ○ 养老金和 RESAVER ○ Science4refugees 计划
脑电图(EEG)是一种广泛认识的非侵入性方法,用于囊化脑生理活性。在大多数医院环境中,它的成本效益,可移植性,易移,管理便利性和广泛可用性而脱颖而出。与其他关注解剖结构(例如MRI,CT和fMRI)的神经影像模式不同,EEG擅长提供超高的时间分辨率,这是对脑功能的深入了解的重要资产[1]。脑电图数据的经验解释主要依赖于不同生物学状态(例如,觉醒与睡眠[2])和阵发性和形态学特征[3]的鉴定(例如,觉醒与睡眠[2])以及常见的放电[4]。对外部刺激和激活程序的反应性,例如间歇性的光刺激或过度换气,在EEG分析中也起着显着的作用[5,6]。尽管这些实际方法在许多情况下很有价值,但它们通常没有捕获大脑网络各种解剖成分之间的复杂,动态和非线性相互作用。这些相互作用经常隐藏在脑电图记录中,超过了训练有素的医生的观察能力。这种监督得到了各种神经疾病的大量证据的支持,包括癫痫,神经退行性痴呆症,神经精神病学和运动障碍以及正常的认知范式[7]。此外,脑电图数据本质上是非平稳的,并且易受噪声来源的敏感,尤其是频率干扰。因此,从原始脑电图数据中有效删除噪声是要提取有意义的信息,以准确反映大脑活动和状态[8]。近年来,基于机器学习的方法吸引了相当大的关注,因为它们在嘈杂的脑电图记录中针对各种应用程序揭示了基本模式的特殊能力。本期特刊是传播EEG信号预处理,建模,分析及其应用中原始高质量研究的平台,特别关注机器学习和深度学习技术的利用。所涵盖的申请范围包括以下内容:•医疗保健申请,包括癫痫(贡献1-3)和麻醉(贡献4); •与情感有关的研究(贡献5-7); •运动图像研究(贡献8-10); •研究外部刺激(贡献11-13); •有关心理工作量的研究(贡献14-15); •满意度的研究(贡献16)。
化学性侵犯转移性结直肠癌(MCRC)的患者预后不佳。使用程序性细胞死亡蛋白1(PD-1)/程序性细胞死亡配体1(PD-L1)抑制剂的应用鼓励改善MCRC微卫星不稳定性高(MSI-H)/不匹配修复维修剂(DMMR)的生存。不幸的是,对于MCRC而言,微卫星稳定(MSS)/优先不匹配修复(PMMR)无效,占MCRC的95%。放射疗法可以通过直接杀死肿瘤细胞并诱导阳性免疫活性来促进局部控制,这可能有助于协同进行免疫疗法。我们介绍了一名先进的MSS/PMMR MCRC患者,该患者在第一线化学疗法,姑息手术和二线化学疗法结合靶向疗法后患有进行性疾病(PD)。然后,患者接受了PD-1抑制剂的疗法,结合了放射疗法和粒细胞 - 巨噬细胞刺激因子(GM-CSF)。根据实体瘤版本1.1(recist1.1)的反应评估标准,该患者在三年后与无进展生存期(PFS)的三重疗法后显示了完全反应(CR),迄今为止已有2年以上的时间。患者除疲劳(1级)外没有其他明显的不良反应。三合一疗法为转移性化学难治性MSS/PMMR MCRC患者提供了有希望的策略。
随着人工智能 (AI) 和物联网 (IoT) 的融合重新定义了行业、商业和经济的运作方式,对边缘节能和高性能计算的需求呈指数级增长。神经形态计算是一种新兴的计算范式,受到生物大脑的低功耗和并行处理能力的启发,克服了传统计算机架构的许多限制。最重要的是,通过在内存中执行计算,神经形态计算克服了冯·诺依曼瓶颈,从而提高了计算能力,同时节省了更多的面积和功耗。虽然已经开发出几种具有出色能效的独立神经形态芯片来运行特定的人工智能算法,但这种数字系统在与边缘传感器连接时仍然会受到影响。这是因为传感输入是非结构化的、非规范化的和碎片化的,这会给具有分离的传感和处理单元的数字系统带来巨大的能源、时间和布线开销。这就需要融合传感、内存和处理功能的内存传感技术,以充分发挥生物电子学和机器人学中使用的高度复杂的传感器和执行器系统的潜力。尽管内存传感和计算的概念还处于起步阶段,但它已经在电子皮肤和仿生眼等专业领域取得了重大进展。然而,这些主要是软件实现,与之相辅相成的硬件挑战尚未得到解决。要充分利用仿生边缘处理能力,仍存在硬件层面(材料和设备)的基本挑战需要解决。因此,“内存传感和计算:新材料和设备迎接新挑战”于去年启动,引发了对最新发展和观点的讨论。来自微电子、材料和计算机科学等多学科背景和不同地区的研究人员已经发表了与此相关的意见和/或原创作品
ICASSCT 2024 会议的主要目标是推动传感器、信号处理和通信领域各方面的创新。会议遵循广泛的盲审流程,选出最佳论文进行演讲,其中包括专门为推进技术、系统和基础设施而设计的技术论文、教程、研讨会和行业会议。会议旨在从通信和信息理论到使用信号处理技术实现、评估和改进实际通信系统的性能。
许多神经系统条件会破坏大脑与其环境之间的信息流。这些疾病包括大脑或脊髓损伤,肌萎缩性侧面硬化症(ALS),脑干中风,多发性硬化症等。这些疾病和其他退化性疾病会损害控制肌肉或损害肌肉本身的神经途径。严重的病例可能导致自愿控制的丧失,包括眼动和呼吸。因此,受影响的个体可能会完全锁定在自己的身体上,无法以任何方式进行交流。现代医疗技术可以使许多如此瘫痪的人过长寿,这加剧了他们的疾病的个人,社会和经济负担。没有治愈这些疾病的任何选择,还保留了三个用于恢复功能的选项[1,2]。第一种选择是增加剩余输出选项的功能。换句话说,仍处于自愿控制的肌肉可以代替瘫痪的肌肉。这种替代通常在实践中受到限制,但仍然有用。对于特殊的技术,借助适当的技术,严重瘫痪的个体可以使用眼动来控制计算机[3];否则他们可能会使用手动作来产生合成语音[4-9]。第二种选择是通过绕过受损的通用途径来恢复功能。例如,脊髓损伤的患者可以使用高于病变水平的肌肉活动来控制瘫痪的肌肉的电刺激,
林德会 天信仪表集团有限公司 DOI:10.12238/jpm.v3i5.4925 [摘 要] 传感器一般由被测量的敏感元件、信号输出的特殊转换元件以及对应的电子线路几部分所构 成。智能仪表技术是一门集单片机、仪表控制技术、自动化技术、电子学等诸多学科的技术。随着信 息技术的不断发展与进步,为传感器以及智能化仪器仪表提供了较大的帮助。传感器以及智能化仪器仪 表逐渐引入自动化、电子信息、计算机、通信等不同领域中,由于计算机技术、微电子技术的飞速发展, 仪器仪表的智能化发展已拥有广阔的市场发展前景。目前,已经逐渐引起相关领域研究人员的高度重 视。本文主要围绕传感器及智能化仪器仪表发展现状以及在重点领域的应用展开全面阐述。 [关键词] 传感器;智能化仪器仪表;应用 中图分类号: TP212.6 文献标识码: A The application of sensors and intelligent instruments in key areas Dehui Lin will Tianxin Instrument Group Co., Ltd [Abstract] The sensor is generally composed of the measured sensitive element, the special conversion element of the signal output and the corresponding electronic circuit.Intelligent instrument technology is a set of single chip computer, instrument control technology, automation technology, electronics and many other disciplines.With the continuous development and progress of information technology, it has provided great help for sensors and intelligent instruments.Sensors and intelligent instruments and instruments are gradually introduced into automation, electronic information, computer, communication and other different fields, due to the rapid development of computer technology, microelectronics technology, the intelligent development of instruments and meters has a broad market development prospect.At present, it has gradually attracted great attention from researchers in related fields.This paper mainly focuses on the development status of sensors and intelligent instruments and their application in key areas. [Key words] Sensors; intelligent instrumentation; application 前言