单独的用户调查不能准确测量现场改进的烹饪炉的实际使用。我们介绍了在印度马哈拉施特拉邦的两项监测研究中比较调查报告和传感器录制的烹饪事件或使用持续时间的结果。第一个是向159个家庭提供的伯克利 - 印度炉子(BIS)的免费试验,我们平均监视厨师炉灶的使用时间为10天(SD = 4.5)(称为“自由审判研究”)。在第二项研究中,我们以91个家庭对BIS的使用平均468天(SD = 153),他们以大约三分之一的家庭月收入(称为“购买后研究”)购买的价格购买了BI(SD = 153)。研究从2019年2月到2021年3月。我们发现,在自由审判研究中,有34%的家庭(n = 88)过度报告了双BIS的使用,分别在第一次(n = 75)和第二次(n = 69)的调查中,在允许后期研究的第一个(n = 75)和第二个家庭中使用了46%和28%的家庭。两项研究中的平均过度报告均在询问家庭使用二元问题格式的使用情况下减少,但是这种方法提供了较少的粒度。值得注意的是,在购买后的研究中,传感器表明,即使他们用自己的钱购买了大多数家庭,他们也会分离厨师炉灶。调查未能检测到库克炉使用情况的长期下降趋势。实际上,调查表明,在研究期间,CookStoves的采用率保持不变。一些传感器记录使用零的家庭报告了库克炉燃料节省,快速烹饪和更少的烟雾。家庭倾向于报告使用标称使用的响应,例如每周0、7或14个烹饪事件(对应于每天0、1或2次),这表明一周内召回精确使用天数的困难。此外,我们发现调查还可能在不支持传感器数据的情况下对用户报告的CookStove福利提供误导性的定性发现,从而导致我们高估了影响。这些发现表明,根据炉子减少对健康损害或减少现实世界实施中的排放的能力,调查可能不可靠或不足以为补贴提供稳固的基础数据。
大多数人都熟悉帕夫洛维亚的调节,其中奖励的预期行为遵循了预测的刺激。这种机制的背后是纹状体中释放的多巴胺,纹状体是皮层基底神经节的最大结构,它连接运动运动和动机。然而,尚不清楚将哪种多巴胺信号传输到纹状体以引起灵长类动物的行为。
RFID发现的自动停车系统旨在为Arduino和RFID技术提供有效的停车场。就像在超现代世界中一样,一切都是自动的,它构建了一个系统,该系统会自动嗅探穿过大门的公共汽车的条目和输出,以及停车场中的公共汽车数量。检查和结帐迅速处理而不停止公共汽车,因此在这些过程中避免了业务果酱问题。这项开发的技术可用于自动停车位最常见的所有资产阶级地区。一些可以安装和使用此设计的重型公司是商店,医院,机场,电影院,公寓等。在大城市中,土地成本正在呈指数增长。因此,重要的是,停车位需要最低的位置并吸收最大车辆量子。通过此设计,我们开发了一种用于自动停车系统的停车系统,以时尚使用广场。
这项研究介绍了用于Covid-19检测的生物传感器的设计和分析,将石墨烯元面积与金,银和GST材料整合在一起。所提出的传感器架构将平方环谐振器与圆环谐振器结合在一起,并通过红外制度中的Comsol多物理模拟进行了优化。传感器表现出非凡的性能特征,在初级检测带(4.2-4.6μm)中的吸收值超过99.5%,次级带(5.0-5.5μm)中的吸收值约为97.5%。该设备表现出高灵敏度(4000 nm/riU),检测极限为0.078,优点为16.000riu⁻时,当利用晶体GST作为底物材料时。通过使用XGBoost回归的机器学习优化,传感器的性能得到了进一步提高,从而在各种操作参数之间实现了预测和实验值之间的完美相关性(R²= 100%)。双波段检测机制,结合了高级材料和机器学习优化的整合,为快速,无标签和高度敏感的COVID-19检测提供了有前途的平台。这项研究有助于开发用于病毒检测和疾病诊断的下一代生物传感技术。
数十年来,研发旨在将数据转换为信息(什么,何时,何时何地,谁),知识(如何)和洞察力(为什么)。当前的AI模型主要集中于大量数据进行培训和测试,这是一个过度简化的学习模型。本质上,多模式传感是所有生物基础的智力的一部分。是感知目标,意识到情况并适应变化的能力。基本算法包括传感器融合,信号注册,可视化,相互作用和推理。多模式感官智能是当今生成的AI和深度学习范式中缺少难题的一部分,它们对自主系统,人类机器人互动和网络物理系统产生更大的影响。我们预计,感官智能将需要更少的数据,更快地执行,适应更改,并且在算法上更简单,并具有定性物理学以及语义或视觉解释的推理。总的来说,它将能够解决盛行的数据科学所无法的问题。
▶Nagarjun Bhat,Agrim Gupta,Ishan Bansal,Harine Govindarajan,Dinesh Bharadia。 div>2024。zensetag:RFID辅助双标签单
摘要 - 尽管在边缘应用中广泛采用了视力传感器,例如监视,视频数据的传输会消耗大量频谱资源。Semantic Communication(SC)通过在语义层面提取和压缩信息,提供传输数据的准确性和相关性,同时大大减少传输信息的量,从而提供了解决方案。但是,由于缺乏感应能力,传统的SC方法由于在边缘视频中反复传输静态帧而面临效率低下,这会导致频谱效率低下。为了应对这一挑战,我们建议使用计算机视觉传感(SCCV)框架进行EDGE视频传输的SC。框架首先引入了压缩比(CR)自适应SC(CRSC)模型,能够根据帧是静态还是动态的,能够调整CR,并有效地保存光谱资源。此外,我们实施了一个对象检测和语义分割模型启用的传感(OSMS)方案,该方案可以智能地感知场景中的变化并通过封闭式分析评估每个帧的重要性。因此,OSMS方案根据实时感应结果为CRSC模型提供CR提示。此外,CRSC和OSM都设计为轻量级型号,可确保与实用边缘应用中常用的资源受限传感器的兼容性。实验模拟验证了所提出的SCCVS框架的有效性,证明了其提高传输效率的能力而无需牺牲关键的语义信息。
This Special Issue of the journal Sensors will focus on “Network security and IoT Security”, with a broad focus on the following (but not exhaustive) list of topics: - IoT security threats and mitigation - Access management - Improved authentication - Wireless security - Firewalls and honeypots - Endpoint security - Digital piracy - Biometrics in security - Malware detection - Information security - Cloud security - Ransomware - Risk management - Digital forensics - Challenges in remote访问 - 数据存储安全性 - 数据丢失预防系统 - 社交媒体安全 - 密码学 - 区块链 - 移动应用程序安全
•集成温度传感器与电池的紧密接近相结合,可以进行电池温度测量•多个应用特定的硬件块减少了MCU开销和相关功耗•可配置的可配置的低功率模式,具有自动电池状态观测状态,自动化的唤醒能力和复杂的唤醒能力和精致