随着近期研究和开发的进行,“边缘”本身仍然是一个模糊的术语。不同的社区和研究人员 2 缺乏关于边缘是什么、它位于何处以及谁提供它的普遍接受的定义。人们对其属性有共同的理解:与云相比,其特征是接近性(延迟和拓扑)、网络容量增加(有效实现的数据传输速率)、计算能力较低、规模较小、设备异构性较高。与终端设备(最后一跳)相比,它具有增加的计算和存储资源。它是一个抽象实体,可以卸载计算和存储,而无需绕道到云端。当前的 AI 和 ML 方法需要强大的计算基础设施 [5],而数据中心拥有充足的可用计算和数据存储资源,可以更好地满足这一需求。但是,将必要的原始数据发送到云端会给网络带宽和吞吐量带来压力。同时,组织通常不太愿意与商业云提供商共享(可能受到限制的)数据。快速发展的边缘 AI 领域解决了这一紧张局势。如图 1 所示,边缘 AI 已逐渐进入主流服务领域,例如联网汽车、实时游戏、智能工厂和医疗保健。从基础设施的角度来看,边缘环境为 AI 提供了一个独特的层,
随着近期研究和开发的进行,“边缘”本身仍然是一个模糊的术语。不同的社区和研究人员 2 缺乏关于边缘是什么、它位于何处以及谁提供它的普遍接受的定义。人们对其属性有共同的理解:与云相比,其特征是接近性(延迟和拓扑)、网络容量增加(有效实现的数据传输速率)、计算能力较低、规模较小、设备异构性较高。与终端设备(最后一跳)相比,它具有增加的计算和存储资源。它是一个抽象实体,可以卸载计算和存储,而无需绕道到云端。当前的 AI 和 ML 方法需要强大的计算基础设施 [5],而数据中心拥有充足的可用计算和数据存储资源,可以更好地满足这一需求。但是,将必要的原始数据发送到云端会给网络带宽和吞吐量带来压力。同时,组织通常不太愿意与商业云提供商共享(可能受到限制的)数据。快速发展的边缘 AI 领域解决了这一紧张局势。如图 1 所示,边缘 AI 已逐渐进入主流服务领域,例如联网汽车、实时游戏、智能工厂和医疗保健。从基础设施的角度来看,边缘环境为 AI 提供了一个独特的层,
摘要:脑机接口(BCI)的关键参数是输入速度、准确性、易用性和输入数量。稳态视觉诱发电位(SSVEP)–BCI在前三个类别中表现优异,但在输入数量方面存在问题。我们设计了一个50选择性SSVEP–BCI,以增加输入数量,以便将来实现日语和PC键盘输入。为了增加输入数量,我们提高了频率分辨率。通过将刺激的分辨率从0.2Hz更改为0.1Hz,可以将输入数量翻倍。这是因为可以将输入数量翻倍。我们对受试者的原始和伪信号数据进行了典型相关分析。噪声非常大,而输出典型相关向量最大值的传统分析方法的正响应率很低。因此,我们进行了频带限制,通过频率阈值区分SSVEP成分。我们还引入了多数表决算法来消除不可分类的数据。结果表明:脑机接口的平均正确率为55.11%,最高为79.53%;平均信息传输速率为28.05bits/min,最高为45.16bits/min。因此,实验结果表明,频率分辨率的提高可以增加输入的数量。关键词:脑机接口,稳态视觉诱发电位,典型相关分析,多选择1.引言
RS485接口广泛应用于工业控制、远程抄表等领域,而这些领域经常受到严重的静电损害。本文提出了一种无需额外工艺改造的片上TVS(OCT)结构和一种用于RS485收发器IC的新型静电放电方法。它由一系列齐纳二极管组成,采用5V/18V/24V 0.5μm CDMOS工艺制作。对提出的OCT进行了100ns脉冲宽度的传输线脉冲(TLP)测试。驱动电路本身也可用作ESD器件。OCT触发电压与RS485标准的信号电平兼容。OCT器件的人体模型(HBM)防护等级高达16.34kV。对集成OCT的RS485收发器也进行了测试,以验证其可靠性。结果表明,它能够通过 IEC61000-4-2 接触 ±10kV 应力和 IEC 61000−4−4 电快速瞬变 (EFT) ±2.2kV,不会出现任何硬损坏和闩锁问题。集成 OCT 的 RS485 收发器可实现高达 500 kbps 的无错误数据传输速率。该芯片占用 2.4 × 1.17mm 2 的硅片面积。关键词:片上 TVS (OCT);传输线脉冲 (TLP);RS485 齐纳二极管。
摘要:利用四类相位编码刺激,开发了基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统。将高于临界融合频率(CFF)的60Hz闪烁光诱发的SSVEP与15Hz和30Hz的SSVEP进行比较。采用任务相关成分分析(TRCA)方法检测脑电图(EEG)中的SSVEP成分。对17名受试者的离线分析表明,60Hz的最高信息传输速率(ITR)为29.80±4.65bpm,数据长度为0.5s,分类准确率为70.07±4.15%。在线BCI系统在4s的60Hz下达到平均分类准确率为87.75±3.50%,ITR为16.73±1.63bpm。具体来说,受试者在60Hz下的最大ITR为80bpm,持续时间为0.5s。虽然60Hz的BCI性能低于15Hz和30Hz,但行为测试的结果表明,在无闪烁感知的情况下,60Hz的BCI系统比15Hz和30Hz的BCI系统更舒适。相关性分析表明,信噪比(SNR)较高的SSVEP对应更好的分类性能,舒适度的提高伴随着性能的下降。本研究证明了使用无感知闪烁的用户友好型SSVEP BCI的可行性和潜力。
5G技术的出现代表了移动通信的革命性步骤,其标志是无与伦比的数据传输速率,低延迟和对大量连接设备密度的支持。高级技术(例如网络切片),可以使网络资源的动态分配以满足各种服务要求,这是这种革命性转移的基础[1]。使用网络切片,可以在单个物理基础架构上建立几个针对某些用例定制的虚拟网络[2]。网络切片是5G的关键组成部分,可以很好地满足物联网的不断扩展的需求,包括无人驾驶汽车,智能城市和医疗保健等应用程序。网络切片将物理网络通过使用虚拟化技术作为软件定义的网络(SDN)和网络功能虚拟化(NFV)[3],将物理网络分为离散的虚拟切片。每个切片都可以自主功能,规定分配给其的资源和服务是为满足特定需求而定制的。旨在增强移动宽带(EMBB)的网络切片可能优先考虑视频流的高通量服务,而另一个支持超可靠的低延迟通信(URLLC)的切片可能会服务于任务至关重要的应用程序[4]。
数字处理能力的飞速发展导致了对高性能模拟信号处理产品的需求增加。如今,蜂窝网络除了提供传统语音之外,还提供大量数据和视频,而且传输速率比以往任何时候都快。这导致了依赖复杂数字技术的新调制技术和新空中接口标准的出现。虽然数字技术使系统能够运行得更快、功耗更低、使用更小的封装尺寸并提高每一代系统的可靠性,但这些系统对系统的 RF 和模拟信号采集部分提出了新的要求。基站发射机的复杂调制和宽带宽导致功率放大器 (PA) 的波峰因数更高。为了满足更高波峰因数下更严格的要求,功率放大器通常尺寸过大,以便在线性区域内运行。如果不进行数字校正,PA 效率可能在 10% 左右,这意味着 20 W PA 需要 200 W 的能力。PA 是基站中最大的电力消耗者,因此是蜂窝服务提供商运营费用的重要因素。为了提高 PA 效率,数字技术用于峰值因数降低 (CFR) 和数字预失真 (DPD)。虽然放大器在饱和时效率最高,但它会变得高度非线性。复杂的数字调制需要 PA 具有极高的线性度,
低功耗CMOS工艺 OUT输出口耐压24V VDD内置5V稳压管,串联电阻后支持6-24V电压 15mA固定恒流输出 PWM亮度控制电路,256级亮度控制 精确的电流输出值 最大误差(通道间):±3% 最大误差(芯片间):±5% 单线串行级联接口 单线两通道串行级联接口:芯片数据接口可以通过命令配置DI或者FDI引脚输入,正常模式下输入接口互相切换,DI工作模式下DI引脚输入数据,FDI工作模式下FDI引脚输入数据,D0引脚转发级联数据,该信号不会因为某一芯片的异常而影响其它芯片的正常工作 振荡方式:内置RC振荡,根据数据线上的信号进行时钟同步,在接收到当前单元的数据后自动重新生成后续数据并通过数据输出端送到下一级,信号不随级联距离的增大而失真或衰减 内置上电复位电路,上电复位后所有寄存器均清零初始化 数据传输速率800KHz 封装方式:SOP8和SOT23-8
摘要:基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)拼写器因其高信息传输速率(ITR)而受到广泛研究。本文旨在提高SSVEP-BCI在高速拼写方面的实用性。系统从自行开发的专用EEG设备获取脑电图(EEG)数据,并将刺激布置为键盘。对任务相关成分分析(TRCA)空间滤波器进行修改(mTRCA)以进行目标分类,并且在离线分析中与原始TRCA相比表现出明显更高的性能。在在线系统中,利用基于贝叶斯后验概率的动态停止(DS)策略来实现可变的刺激时间。此外,还优化了时间滤波过程和程序以促进在线DS操作。值得注意的是,在线 ITR 平均达到 330.4 ± 45.4 比特/分钟,明显高于固定停止 (FS) 策略,峰值 420.2 比特/分钟是迄今为止使用 SSVEP-BCI 的最高在线拼写 ITR。所提出的系统具有便携式 EEG 采集、友好的交互和可变的命令输出时间,为基于 SSVEP 的 BCI 提供了更大的灵活性,并有望实现实际的高速拼写。
身体残疾一直是我们社区面临的一个大问题。衰老、疾病和其他变量都是造成这些问题的原因。这就是为什么电动轮椅被设计用来帮助身体残疾人的原因。轮椅使用者已经接触过各种旨在提高其行动能力的辅助技术。因此,不同的辅助技术最近在帮助轮椅使用者移动方面发挥了重要作用,这是因为技术变化太快了。最近流行的辅助技术包括操纵杆、脑机接口、语音识别、舌头驱动系统、眼动追踪器和吸气和吹气。然而,由于某些国家/地区个人之间的技术差距,一些最有益的辅助技术变得难以利用。本研究的目的是研究和回顾这些身体残疾辅助技术的比较研究。在研究中,将舌头驱动系统、眼动追踪器、语音识别和吸气和吹气技术与操纵杆辅助技术进行了比较。比较基于选定的参数,包括可用性命令、疲劳、响应时间、信息传输速率、效果和成本。根据研究结果,研究人员提出了适合发展中国家的配备辅助技术的轮椅设计方案。关键词:身体残疾、电动轮椅、辅助技术、发展中国家。_______________________________________________________________________________________________ 1. 引言