2.2.5.e 对于应力集中区域的元件,即开口的拐角、主要支撑结构构件的肘板的趾部和跟部,在计算航海载荷工况(S + D 设计组合)的屈服利用系数时,材料的屈服应力不应大于 315 N/mm 2。当使用高强度钢不能提高高循环载荷下结构细节的疲劳强度时,这可用作控制高循环疲劳损伤的隐性方法。在许多情况下,由于结构中允许的应力较高,使用高强度钢建造的结构细节的疲劳损伤实际上比使用低碳钢建造的结构细节更严重。这种对高强度钢屈服强度利用的限制不适用于港口/油罐试验载荷工况(S 设计组合)。这些载荷工况所代表的相关失效模式是低周疲劳(重复屈服),可能由于加载/卸载顺序而发生。对于低周疲劳,疲劳强度随屈服强度的增加而增加,并且与材料的屈服强度成正比。另请参阅 2.3.5.h。
8872 (25 kN) 疲劳测试系统..................................................................................................... 8874 (25 kN/100 Nm) 疲劳测试系统..................................................................................... 8801 (100 kN) 疲劳测试系统..................................................................................................... 8862 (100 kN) 低周疲劳测试系统......................................................................................................... 8802 (250 kN) 疲劳测试系统..................................................................................................... 8803 (500 kN) 疲劳测试系统..................................................................................................... 8800MT 控制器电子设备............................................................................................................. 液压动力装置.............................................................................................................................
与高周疲劳 (HCF) 相关的载荷幅度,特别是与超高周疲劳 (VHCF) 相关的载荷幅度,以及特殊载荷和误用,对于属于低周疲劳 (LCF) 的载荷幅度,Wöhler 曲线必须从 LCF 连续到 HCF 再到 VHCF。根据组件及其服务载荷条件,Wöhler 曲线的各个部分成为关注的焦点。对于曲轴等组件,VHCF 状态的损坏机制很重要。另一方面,为了考虑底盘及其组件(例如转向节)的服务载荷,必须了解所有三个状态下的损坏机制。除了技术方面,还必须考虑经济问题,例如确定 Wöhler 曲线所需的努力。此外,参考数字化的发展,方法
摘要 在室温下评估了 AA1100 和 AA1050 铝板沿不同方向的高周疲劳 (HCF) 和低周疲劳 (LCF) 疲劳寿命。由于沿两个典型方向的样品表现出明显的各向异性,因此比较了四种类型的样品,分别表示为纵向 (L) 和横向 (T)。为此专门设计了悬臂平面弯曲和多类型疲劳试验机。在完全反向载荷下进行了挠度控制疲劳试验。AA1050 (L) 在 LCF 区域获得了最长的疲劳寿命,而 AA1100 (L) 样品在 HCF 区域具有最长的疲劳寿命。2016 亚历山大大学工程学院。由 Elsevier BV 制作和托管 这是一篇根据 CC BY-NC-ND 许可 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
摘要 在室温下评估了 AA1100 和 AA1050 轧制铝板沿不同方向的高周疲劳 (HCF) 和低周疲劳 (LCF) 疲劳寿命。由于沿两个典型方向的样品表现出明显的各向异性,因此比较了四种类型的样品,分别表示为纵向 (L) 和横向 (T)。为此专门设计了悬臂平面弯曲和多类型疲劳试验机。在完全反向载荷下进行了挠度控制疲劳试验。AA1050 (L) 在 LCF 区域获得了最长的疲劳寿命,而 AA1100 (L) 样品在 HCF 区域具有最长的疲劳寿命。2016 亚历山大大学工程学院。由 Elsevier B.V. 制作和托管。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
摘要 在室温下评估了沿不同方向轧制 AA1100 和 AA1050 铝板的高周疲劳 (HCF) 和低周疲劳 (LCF) 疲劳寿命。由于沿两个典型方向的样品表现出明显的各向异性,因此比较了四种类型的样品,分别表示为纵向 (L) 和横向 (T)。为此专门设计了悬臂平面弯曲和多类型疲劳试验机。在完全反向载荷下进行了挠度控制疲劳试验。AA1050 (L) 在 LCF 区域获得了最长的疲劳寿命,而 AA1100 (L) 样品在 HCF 区域具有最长的疲劳寿命。� 2016 亚历山大大学工程学院。由 Elsevier BV 制作和托管 这是一篇根据 CC BY-NC-ND 许可 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放存取文章。
关键的飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用疲劳寿命评估和裂纹扩展预测来监测其关键部件的结构完整性。使用了各种方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。选择水平稳定器凸耳是因为它具有最高的疲劳失效可能性。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 Nastran 来模拟裂纹扩展。使用数值结果验证了裂纹扩展分析的结果。结论是,基于疲劳寿命循环,结构状态不会受到严重损伤,其失效大约在100万次循环左右,而耳片底部裂纹扩展位置是关键位置。研究成果将以延长耳片的结构寿命为目标。
期刊出版物 [1] MAA Roslin、N Ab Razak、NA Alang、N Sazali,(2023 年)。“低周疲劳载荷下 P91 钢的数值模拟”,《失效分析与预防杂志》,1-9。 [2] IU Ferdous、NA Alang、J Alias、AH Ahmad、S Mohd Nadzir,(2022 年)。“缺口约束影响下 91 级钢的断裂寿命和失效机理”,《失效分析与预防杂志》,1-14 [3] J Alias、NA Alang、AH Ahmad、NA Razak,(2022 年)。“碳钢管法兰部件的失效分析”,《失效分析与预防杂志》,1-7 [4] N Ab Razak、SNA Rosli、NA Alang,(2022 年)。 “用于预测未焊接和焊接 P91 钢的蠕变寿命的 Larson Miller 参数”,国际综合工程杂志 14 (8), 101-111
在本技术演讲中,将介绍并简要强调/讨论金属基复合材料或金属基复合材料领域特有的一些显著属性和复杂性,这些复合材料是一种经济实惠且可能可行的金属替代品或替代品,可用于性能关键和非性能关键应用中。将介绍并简要讨论微观结构对铝合金基金属基复合材料的准静态、循环疲劳和最终断裂行为的影响的复杂性。所选铝合金金属基复合材料的试件在单轴拉伸和循环疲劳下均发生变形。循环疲劳试验是在应力控制(高周疲劳)和应变控制(低周疲劳)下进行的。考虑到载荷性质、内在微观结构效应、复合材料微观成分的变形特性和断裂的宏观方面相互竞争和相互作用的影响,将合理化内在微观结构效应和内在微观机制在控制工程复合材料的变形和断裂行为方面的共同影响。
摘要 近年来,为了改善飞机涡轮盘的疲劳性能,镍基高温合金的制造工艺取得了重大进展,从而导致晶粒尺寸减小。事实上,粒度的变化会影响疲劳裂纹的起始模式以及材料的疲劳寿命。本研究旨在研究新开发的镍基高温合金在双轴平面载荷下的疲劳行为。在不同应力比下进行低周疲劳 (LCF) 试验,以研究多轴应力状态对材料疲劳寿命的影响。使用数字图像相关 (DIC) 技术获得全场位移和应变测量以及裂纹起始检测。给出了与不同载荷比相关的结果,并给出了适当的双轴寿命预测。提到了每种载荷情况下的裂纹检测、应变幅度和裂纹起始循环数与三轴应力比的关系。通过扫描电子显微镜的断口研究发现,疲劳裂纹的萌生机制与三轴应力比无关,大多数疲劳裂纹都是从表面下的碳化物萌生的。关键词 – 多轴疲劳、十字形试样、镍基高温合金