本报告是在世界与全球疫情作斗争的特别动荡时期编写的。然而,软件仍在继续增长、激增并改善我们的数字化生活。随着组织进行重大数字化转型,基于软件的创新和开发迅速扩展。结果是一种平衡行为,试图在不牺牲质量的情况下高速交付价值。然而,一般来说,我们不太擅长平衡。在大多数组织中,软件质量落后于其他目标。对质量的缺乏主要关注会带来高昂的代价,这在本报告中有所揭示。虽然组织可以将速度的商业价值货币化,但他们很少衡量低质量的抵消成本。对于 2020 年,我们确定美国低质量软件总成本 (CPSQ) 为 2.08 万亿美元 (T)。我们还注意到,2020 年美国需要纠正的严重缺陷所造成的软件技术债务数字为 1.31 万亿美元(减去利息),但不包括总 CPSQ 中的技术债务,因为它代表的是未来成本,而且成本在不断增加(自 2018 年以来增长了 14%)。图形结果如下所示。图 1:美国 2020 年的 CPSQ
图 1:STitch3D 概览。a. 来自多个 ST 组织切片的原始数据和来自参考 scRNA-seq 数据集的细胞类型特异性基因表达谱作为 STitch3D 的输入。b. STitch3D 的预处理步骤包括对来自不同组织切片的斑点进行对齐以构建斑点的 3D 位置,以及构建全局 3D 图。STitch3D 的主模型结合这些结构来执行表示学习,用于 3D 空间域识别和 3D 细胞类型反卷积。c. STitch3D 输出 3D 空间区域识别结果和组织中不同细胞类型的 3D 空间分布估计。STitch3D 还支持多种下游分析,包括空间轨迹推断、低质量基因表达测量值的去噪、虚拟组织切片的生成以及具有 3D 空间表达模式的基因识别。d. STitch3D 对多个切片进行联合建模,并利用基于图注意的神经网络学习具有 3D 空间信息的斑点和细胞类型比例的潜在表示。
通常,样品可能包含来自样品矩阵或低质量流动相位溶剂的化合物,可以通过固定相保留。盐,脂质,增塑剂和聚合物是在分析过程中可能与固定相接触的一些可能物质。这些物质可能会对色谱柱,检测器产生有害影响,并在分析过程中引起瞬时峰。如果这些物质不被流动阶段洗脱,它们可以积聚在列上。随着时间的流逝,分析物可以与这些杂质相互作用并影响分离机制,从而导致保留时间移动和峰值尾巴。此外,这些积累的杂质会造成阻塞,从而导致柱面压力升高,损坏泵,并可能导致柱床中的空隙形成。强烈建议使用防护柱来避免此类问题。防护列是短列,包装包装与喷射器和分析柱之间安装的分析列相似。在给定期间后,它们被丢弃,并安装了新鲜的防护柱,以最大化分析柱的寿命。
提高产量和工艺控制的关键特性 快速响应加热器系统:采用低质量设计的快速响应加热器选项可最大限度地缩短处理时间。受控工艺热 (CpH) 选项可通过软件控制冲击气流和温度,从而完全消除操作员干预。可编程热状态允许在短预热周期内使用高气流,并在没有零件时提供“降压”或“不加热”功能。CpH 选项可提高产量,并通过降低功耗提供“热足迹”效率。Fids-on-the-Fly™:Fids-on-the-Fly 选项比传统的停止和捕获基准点方法快 5.5 倍,并且可以将 UPH(每小时单位数)提高 35%。可编程流体和阀门压力:流体和阀门压力值在 FmXP 程序中设置,从而消除了操作过程中手动调整相关的错误。软件控制的压力设定点提供闭环工艺控制,并通过日志文件捕获提供更好的可追溯性。完整的配方(包括传送带、加热器和气压设置)可以轻松复制到工厂内和世界各地的其他 S-920N 系统。
摘要:等离激元纳米剂是一种新型的超小型激光器,由于其光线和快速载体动力学特征的破坏衍射极限,因此获得了广泛的兴趣。通常,对于等离激子纳米剂需要解决的主要问题是光学和欧姆损失引起的高损失,这导致了低质量因子。在这项工作中,设计和制造了具有较大界面区域的Ingan/gan纳米板等离激元纳米剂,其中SPS和激子之间的重叠可以得到构成。激光阈值计算为〜6.36 kW/cm 2,其中最大最大宽度(FWHM)从27 nm下降到4 nm。和502 nm处的快速衰减时间(刺激激光的尖峰)估计为0.42 ns。增强的激光特性主要归因于低折射率材料中电磁波的强限制,这证明了SPS和激子之间的近场耦合。这种等离子激光器应在数据存储应用程序,生物应用,光通信中有用,特别是对于集成到芯片上系统中的光电设备。
随着立方体卫星技术在轨测试和实施的日益增多,对高效、低质量推进系统的需求也不断增长。离子推进系统已成为填补立方体卫星推进空白的潜在技术。BeaverCube 是麻省理工学院学生建造的 3U 立方体卫星,将在低地球轨道上进行离子推进系统演示。BeaverCube 计划于 2020 年 10 月之前发射,旨在展示 Accion Systems Inc. 的平铺离子液体电喷雾推进系统。该系统利用离子液体作为推进剂,使 BeaverCube 能够进行高效、低推力机动。成功的系统演示将能够使用 BeaverCube 上的 NovAtel OEM-719 全球定位系统接收器检测平移机动。可探测性要求机动的高度变化至少为 9 米,这比预期的 GPS 高度误差高出 3 个标准差。这项工作的目标是确定平移机动的持续时间,从而产生最高的探测概率,同时产生最小的推力计算误差。根据 Systems Tool Kit 中执行的模拟,确定 3.5 小时的机动是最佳的,导致高度变化为 280.6 米。
空间站是美国在太空领域的下一个重大承诺。高效地向多个用户负载输送电力是成功的关键。1969 年,NASA 刘易斯研究中心开始了一系列研究,研究元件和电路的发展,最终开发出高频、双向、四象限谐振驱动转换器。到 20 世纪 80 年代初,进一步的研究和后续发展表明,高频交流电源系统可以为许多航空航天电源系统提供整体优势。由于其广泛的多功能性,它还为空间站计划及其广泛的用户带来了突出的优势。高频交流电源效率更高、成本更低、安全性更高。20 kHz 电源系统具有出色的灵活性、固有的用户友好性,并与所有类型的能源兼容 - 光伏、太阳能动力、旋转机器或核能。刘易斯最近已根据合同完成了 25 kW、20 kHz 交流配电系统试验台的开发。该测试平台展示了其对用户技术的灵活性、多功能性和透明度,以及高效率、低质量和小体积的特点。
实验证据和经过验证的个人陈述表明,来自遥远思想和环境的视觉和其他类型的信息可以进入个人的意识和潜意识,并且可以显著影响大脑和身体功能。信息似乎可以穿过每一个物理障碍,并且不会随着源和接收器之间距离的增加而降低质量。目前的物理仪器无法检测到任何信号。这种“psi 编码信息”似乎传播的媒介是什么?它的格式是什么?它的寿命是多长?从不同类型的来源中展示和分析了明显的 psi 信息传播的选定示例。为了解释例子中观察到的行为,考虑了 Advaitic 思想传统中发展起来的世界观,其中非物理领域与物质能量和时空的物理领域相互作用。非物理领域的主要货币被假定为 psi 编码信息。结论是这些信息不会通过空间传播。非物理领域的其他特征及其内容可以从这些例子中推断出来。它们提供了一个框架,在这个框架中可以进一步探索 psi 编码信息的性质及其处理。
摘要 —本文对量子通信网络中可扩展性挑战和机遇进行了全面研究,目的是确定对网络影响最大的参数以及扩展网络时出现的趋势。我们设计了量子网络的模拟,该网络由由捕获离子量子比特组成的路由器节点组成,并由贝尔状态测量 (BSM) 节点形式的量子中继器分隔。这样的网络有望安全地共享量子信息并实现高功率分布式量子计算。尽管前景光明,但量子网络仍因噪声和操作错误而遇到可扩展性问题。通过模块化方法,我们的研究旨在克服这些挑战,重点关注扩展节点数和分离距离的影响,同时监测由退相干效应引起的低质量通信。我们的目标是找出网络中对于推进可扩展、大规模量子计算系统至关重要的关键特征。我们的研究结果强调了几个网络参数对可扩展性的影响,突出了对中继器数量和产生的纠缠质量之间权衡的关键见解。本文为未来探索优化量子网络设计和协议奠定了基础。
摘要:开发了一种计算机视觉算法,以确定以5-10 m/s范围内以速度行驶的水气体混合物的两相湍流射流的参数,以评估实时质量交换设备的流体动力效率,并预测汽油汇率。该算法基于阈值分割,主动轮廓方法,主成分方法的回归和特征叠加层的比较,这可以稳定地确定喷气边界,并且在使用低质量数据时是一种比传统的方法更有效的方法。基于喷气机的高速视频记录,提出的算法允许计算Jet的关键特征:速度,入射角,结构密度等。讨论了算法的描述和基于在喷气生物反应器的实验原型上创建的真实喷气机的视频记录的测试应用程序。将结果与计算流体动力学建模和理论预测进行了比较,并证明了良好的一致性。提出的算法本身代表了喷气生物反应器中曝气器操作的实时控制系统的基础,并在实验室喷射流安装中使用,用于积累有关JET的结构和动态性能的大数据。