糖基化是将碳水化合物添加到蛋白质的过程,是一种基本的生物学过程,对人类健康和疾病具有深远的影响。这些聚糖修饰在许多细胞过程中发挥着关键作用,包括蛋白质折叠、细胞信号传导和免疫识别。它们的失调与各种疾病有关,包括癌症、传染病和自身免疫性疾病 ( 1 , 2 )。糖基化重要性的一个显著例子是在癌症免疫治疗领域。癌症治疗的有效性,尤其是抗 PD-L1 单克隆抗体(如阿替利珠单抗)等免疫疗法,会受到肿瘤细胞糖基化模式改变的显著影响 ( 3 , 4 )。这些改变可以保护肿瘤细胞免受免疫监视并抑制对免疫疗法的反应。例如,阿替利珠单抗因疗效有限而退出乳腺癌治疗,凸显了糖基化改变带来的挑战 (5)。在这种情况下,半乳糖凝集素家族蛋白质,特别是半乳糖凝集素 9,成为癌症进展和治疗耐药性的关键因素,强调了糖基化和免疫逃避之间的错综复杂的联系,其中半乳糖凝集素 9 是有效免疫疗法(包括阿替利珠单抗等治疗方法)的潜在障碍 (6,7)。认识到糖生物学在健康和疾病中的重要性日益增加,《免疫学前沿》发表了题为“糖生物学和糖基化:揭开人类和病原体中聚糖的奥秘”的研究课题。 “本研究主题的深刻文章深入探讨了复杂的聚糖世界,每篇文章都提供了关于糖生物学与治疗策略之间联系的独特视角:
1型糖尿病(T1D)是一种自身免疫性疾病,其特征是胰腺中产生胰岛素的B细胞。这种破坏会导致慢性高血糖,因此需要终身胰岛素治疗来管理血糖水平。通常在儿童和年轻人中被诊断出,T1D可以在任何年龄段发生。正在进行的研究旨在揭示T1D潜在的确切机制并开发潜在的干预措施。其中包括调节免疫系统,再生B细胞并创建高级胰岛素输送系统的努力。新兴疗法,例如闭环胰岛素泵,干细胞衍生的B细胞替代和疾病改良疗法(DMTS),为改善T1D患者的生活质量并有潜在地朝着治疗方向前进。目前,尚未批准用于第3阶段T1D的疾病改良疗法。在第3阶段中保留B -cell功能与更好的临床结局有关,包括较低的HBA1C和降低低血糖,神经病和视网膜病的风险。肿瘤坏死因子α(TNF-A)抑制剂在三阶段T1D患者的两项临床试验中,通过测量C肽来保存B细胞功能,证明了效率。然而,在T1D的关键试验中尚未评估TNF-A抑制剂。解决T1D中TNF-A抑制剂的有希望的临床发现,突破T1D召集了一个主要意见领导者(KOLS)的小组。研讨会
“这样的研究对于一般和NPC1患者的基因疗法治疗的分娩策略非常重要,例如确定试验的入学标准,治疗方案是否需要减轻先前存在的NAB,以及在生活过程中NAB的发展可能会影响Hull of Human Gene edior of Munly Gention of Munly Gention of Hull of Munly Gention of Hull of Munly Gention of Hull of Hull of Hull of Hull of Hull of Human Gention for Human Gention of Hull of Hull of Hull of Hull of Hull of Hull of Hull of Hull of Hull of the the。马萨诸塞州chan
。CC-BY 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审证明)预印版本的版权所有者此版本发布于2025年3月10日。 https://doi.org/10.1101/2025.03.06.25323546 doi:medrxiv preprint
近年来,机器学习的研究人员开发了一种决策理论,可以更好地捕捉与选择相关的各种潜在奖励。他们将该理论纳入了一种新的机器学习算法中,该算法优于Atari视频游戏中的替代算法,以及每个决定都具有多个可能结果的其他任务。
在本报告中,我们回顾了磁性材料间原子间交换的明确计算方法。这涉及通常称为海森堡交换,dzyaloshinskii-moriya相互作用和各向异性对称交换的交换机制。详细介绍了电子结构的微观理论(例如密度功能理论或动态均值理论)和原子间交换之间的联系。提取涉及数千原子的有效自旋哈密顿量的信息的不同方面,考虑到明显较少的原子(1-50),从电子结构计算中提取了数千个原子。提出了大量材料交换相互作用的示例,其中涉及3D时期的重元素,过渡金属之间的合金,助母子化合物,多层系统以及底物上的叠加剂和叠加剂,过渡金属氧化物,4F元素,4F元素,磁性
不调节的葡萄糖可能非常危险,因此糖尿病患者必须监测其葡萄糖水平,并在必要时服用胰岛素以降低葡萄糖水平。注射是使胰岛素进入血液的最快方法,但患者通常每天至少需要三到四次注射,这可能会影响其生活质量。遵守该方案是具有挑战性的,随着时间的流逝,这会导致严重的并发症,例如眼睛,肾脏和神经损伤,可能导致肢体截肢。
稀释效应假说(DEH)认为,更大的生物多样性降低了散发性的风险并降低了病原体传播的速度,因为更多样化的社区在任何给定的病原体中都有较少的胜任宿主,从而减少了宿主暴露于病原体。deh预计将在载体传播的病原体和物种富含物种的群落与宿主密度升高相关时最强烈地运作。总体而言,如果较大的物种多样性导致感染载体和易感宿主之间以及受感染的宿主和易感载体之间的接触率较低,则会发生稀释。基于现场的测试同时分析了与宿主和矢量多样性相关的几种多宿主病原体的流行才能验证DEH。我们测试了四种载体传播病原体的房屋麻雀(Passer fordayus)的患病率 - 三个禽流膜孢子虫(包括鸟类疟疾寄生虫疟原虫和类似疟疾的寄生虫的寄生虫造血和白细胞)和西尼氏病毒(WNV)(WNV)(WNV)的关系。鸟类在西班牙西南部的45个地区进行采样,其中存在有关媒介(蚊子)和脊椎动物群落的广泛数据。脊椎动物人口普查是为了量化禽和哺乳动物密度,物种丰富度和均匀度。与DEH,WNV血清阳性和血孢子虫患病率的预测相反,与脊椎动物物种的丰富度甚至均匀度都没有负相关。的确,发现了相反的模式,鸟类丰富度和WNV血清阳性之间存在正相关关系,并且检测到白细胞流行率。当将矢量(mos- quito)丰富性和均匀度纳入模型时,WNV患病率与脊椎动物社区变量之间的所有先前关联保持不变。在任何测试的模型中,尚未发现疟原虫患病率和垂直社区变量的显着关联。尽管研究的系统具有多种特征,这些特征应有利于稀释效应(即,载体传播的病原体,
在过去的十年中,我们目睹了物理学对无分散频段的迅速增长[1-8]。在平坦带(FB)化合物中,由于这些频段的宽度非常狭窄,因此库仑能量是独特的相关能量尺度。这将这些系统置于高度相关的材料等级中,并打开了对异国情调和意外的植物现象和量子阶段的访问。不可否认,最引人注目的特征之一是在费米速度消失的化合物中可能具有高座位温度超导性(SC)的可能性[9-18]。SC的这种不合时宜的形式具有频带间的性质,并且由称为量子公制(QM)的几何量产生。QM连接到量子几何张量的实际部分[19,20],并提供了与FB Bloch特征状态相关的典型表面。到目前为止,这种不寻常形式的超导性的独特实验实现在魔法角度附近的扭曲的石墨烯(Moiré)中已经观察到了这种异常的超导性[8,21 - 26]。众所周知,在传统的BCS系统中,SC具有内在性质[27,28],相干长度ξc由ξBCS=ℏv f
