注意:不应推断杜邦或其他方享有的任何专利。由于使用条件和适用法律可能因地而异,并可能随时间而变化,客户有责任确定本文档中的产品和信息是否适合客户使用,并确保客户的工作场所和处置实践符合适用法律和其他政府法规。本资料中所示的产品可能并非在杜邦有代表的所有地区都有售和/或有售。所作的声明可能并未获准在所有国家或地区使用。杜邦对本文档中的信息不承担任何义务或责任。除非另有明确说明,“杜邦”或“公司”是指向客户销售产品的杜邦法人实体。除杜邦特别提供的任何适用书面保证外,不提供任何明示保证。明确排除所有默示保证,包括适销性和针对特定用途的适用性保证。买方承担使用该材料的所有风险。买方的唯一补救措施或任何索赔(包括但不限于疏忽、严格责任或侵权)应仅限于退还材料的购买价格。未严格遵守任何建议的程序将免除杜邦特种产品美国有限公司或其附属公司对材料或其使用的所有责任。本文中的信息不适用于非专业设计师、应用人员或未在正常业务过程中购买或使用本产品的其他人员。
简单总结:长期以来,自噬被认为在包括 PDAC 在内的多种癌症中发挥促增殖和抗增殖作用。由于自噬抑制剂 CQ 在 PDAC 临床试验中未能显示出治疗效果,因此值得探索替代方法(即提高自噬活性)是否可以发挥抗肿瘤作用。我们的研究旨在评估 Beclin 1 靶向钉合肽是否可以通过扰乱已经升高的自噬过程在 PDAC 中发挥抗增殖作用。我们的研究首次报告了 Beclin 1 靶向钉合肽 Tat-SP4 通过过度自噬、增强的 EGFR 内溶酶体降解和显著的线粒体应激的综合作用有效抑制 PDAC 细胞的增殖。Tat-SP4 在 PDAC 细胞中诱导非凋亡性细胞死亡,这与 CQ 诱导的细胞凋亡形成鲜明对比。总之,Tat-SP4 对自噬过程的干扰可能成为 PDAC 的一种新治疗方法。
随着城市化进程的不断推进和城市地下空间的开发利用,地下城市综合体得到越来越广泛的应用,给人们的生活带来了极大的便利,但由于其封闭性和复杂性,如何在突发事件中避免(或减少)人员伤亡并实现人员快速安全疏散成为亟待解决的问题。本研究利用疏散仿真软件Pathfinder,基于引导模型对比分析了不同模拟疏散措施下总疏散时间、主要出口人流量的变化、关键节点拥堵情况以及人员路径选择等因素,并聚焦和确定了地下城市综合体空间布局中易出现疏散瓶颈效应的关键位置,研究了突发事件下地下城市综合体的疏散有效性,以探讨地下城市综合体的应急疏散问题。研究发现,城市综合楼楼梯出入口、超市收银台等处易出现瓶颈效应,造成严重拥堵,应作为应急疏散时重点关注的位置。对于易出现疏散瓶颈的重点位置,增加出口宽度或设置辅助疏散通道是提高疏散效率的有效措施,此外,制定合理的疏散规则也是有利于应急疏散的措施。然而,在疏散过程中,人群的从众心理对疏散效果具有不确定的(正向或负向)影响,设置导流墙在一定程度上可以提高疏散效率、减少拥堵,但导流后容易出现疏散混乱和无序现象。本研究结果对完善城市综合楼应急管理具有重要意义。
目的:国土安全部 (DHS) 将使用这些信息进行安全威胁评估。如果适用,您的指纹和相关信息将提供给联邦调查局 (FBI),以便将您的指纹与 FBI 的下一代身份识别 (NGI) 系统或其后续系统(包括民事、刑事和潜在指纹存储库)中的其他指纹进行比较。完成此申请后,FBI 可能会在 NGI 中保留您的指纹和相关信息,在保留期间,您的指纹可能会继续与提交给或由 NGI 保留的其他指纹进行比较。DHS 还将传输您的指纹以注册到 US-VISIT 自动生物识别系统 (IDENT)。
作为全球领先的工业气体和工程公司,琳德通过提供高质量的解决方案,技术和服务,使锂电池的世界每天都在使锂电池的生产更加生产力。我们与锂电池客户一起从研发和飞行员量表到大规模生产。通过我们的专有天然气生产技术和专业知识,我们与R&D和飞行员量表的锂电池客户合作,确定最适合其流程的最佳气体供应和杂质控制。随着我们的客户进行大规模生产,他们可以以优化的总体使用成本来利用较早的学习,并具有一流的安全性,质量和可靠性。我们的全球影响力还可以确保当客户在不同地区开始设施时,无缝复制。
该文件是应欧洲议会经济和货币事务委员会的要求编写的。作者 Volker WIELAND,国际货币金融研究所,法兰克福歌德大学和德国经济专家委员会 负责管理员 Alice ZOPPÈ 编辑助理 Ovidiu TURCU 语言版本 原文:EN 关于编辑 经济治理支持部门提供内部和外部专业知识,支持欧洲议会委员会和其他议会机构制定立法并对欧盟内部政策进行民主监督。如需联系经济治理支持部门或订阅其时事通讯,请写信至: 经济治理支持部门 欧洲议会 B-1047 布鲁塞尔 电子邮件:egov@ep.europa.eu 手稿于 2022 年 2 月完成 © 欧盟,2022 本文件和其他支持性分析可在互联网上获取:http://www.europarl.europa.eu/supporting-analyses 免责声明和版权 本文件中表达的观点由作者全权负责,并不一定代表欧洲议会的官方立场。 在非商业目的下复制和翻译是被授权的,只要注明出处并事先通知欧洲议会并发送副本。
hzμm-3(带有自旋型耦合系数,代表主要的系统不确定性)。我们在具有低应变梯度的单晶散装钻石中使用应变敏感的自旋态干涉仪(N- V)颜色中心。这种量子干涉量学技术对磁场对电子和核自旋浴的不均匀性产生了不敏感性,从而实现了长时间的N- V – Angelement Electemple-Electemple-Electemple-Electement Electem-Election旋转时间和增强的应变敏感性,并增强了该技术的潜在应用,并拓宽了相同的技术的潜在应用。我们在共聚焦扫描激光显微镜上首先证明了应变敏感的测量方案,从而提供了敏感性的定量测量以及三维应变图;第二位于宽阔的成像量子钻石显微镜上。我们的应变 - 显微镜技术可以快速,敏感的钻石材料工程和纳米化表征;以及基于钻石的菌株感测所应用的,例如在钻石砧细胞或嵌入式钻石应力传感器中,或内部通过粒子诱导的核后坐力引起的晶体损伤。
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aelm.202100970。本文受版权保护。保留所有权利。
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aelm.202100970。本文受版权保护。保留所有权利。
高介电材料的研究最近引起了极大的关注,这是用于应用金属构造器金属(MIM)电容器的关键被动组件。在本文中,通过原子层沉积技术(ITO)氧化锡(ITO)预涂层的玻璃底物和氮化钛(TIN)涂层的SI覆盖的Si底物在本文中制备了50 nm厚的Al 2 O 3薄膜。光刻和金属提升技术用于处理MIM电容器。用探针站的半导体分析仪用于使用低中等频率范围进行电容 - 电压(C-V)表征。MIM电容器的电流 - 电压(I-V)特性在精确源/测量系统上测量。在电压范围从-5到5 V的玻璃上,Al 2 O 3膜在玻璃上的性能从10 kHz到5 MHz。Au/Al 2 O 3/ITO/玻璃MIM电容器在100 kHz时显示1.6 ff/µm 2的电容密度为1.6 ff/µm 2,在100 kHz时损耗〜0.005,在1 mv/cm(5 v)下,在100 kHz时损耗〜0.005,泄漏电流为1.79×10 -8 a/cm 2。Au/Al 2 O 3/TIN/SI MIM电容器在100 kHz时的电容密度为1.5 ff/µm 2,在100 kHz时损耗〜0.007,较低的泄漏电流为2.93×10 -10 -10 -10 -10 A/cm 2,在1 mv/cm(5 v)处于1 mv/cm(5 v)。获得的电源可能表明MIM电容器的有希望的应用。关键字
