表现出高比容量(2 A g 1 时 576 C g 1)。Shinde 等人 11 在室温下通过快速化学法生长了 3D Bi 2 O 3,在电流密度为 2 A g 1 时其比容量为 447 C g 1。刘等人 12 设计了缺氧 r-Bi 2 O 3 /石墨烯柔性电极,在 1 mA cm 2 时具有 1137 C g 1 的高比容量。尽管如此,Bi 2 O 3 对于 ASC 仍然存在缺点,例如其本质上较差的电子和离子电导率,充电 - 放电过程中的体积膨胀很大。进一步的研究表明,碳可以作为缓冲层,有效减少形貌变化,保护电极结构。Bi 2 O 3 /C复合材料的简便设计和制备策略仍需继续研究,以调整形貌和电子结构。13 – 16
硅(Si)由于其高容量而被认为是下一代阳极的有前途的阳极材料。然而,循环过程中大量的膨胀和主动颗粒粉碎会迅速恶化电池性能。SI阳极粒径和粒子粉碎之间的关系以及循环过程中Si颗粒的结构演变尚不清楚。在这项研究中,对未包装和还原的氧化石墨烯(RGO)包裹的SI纳米颗粒(SI@RGO)的形态变化进行了定量的,时间分辨的“ Operando”小角度X射线散射(SAXS)研究。结果提供了SI粒径变化以及非辅助RGO在减轻SI体积膨胀和粉碎中的作用的清晰图片。此外,这项研究证明了与其他方法相比,在电化学环境中“操作”萨克斯的优势。
增加了制造高能量可充电电池的需求。1在各种环保能量转换技术中,锂 - 硫酸锂(Li-S)电池被认为是储存能量的新兴替代方案,并且具有2600 W H kg 1的理论能量密度和低环境影响。2此外,关于商业欲望表,Li – s电池远远超出了当前的锂离子电池。硫磺的非凡品质,例如负担能力和生态友好性,使Li – S Batteres成为许多企业的首选。它们不仅提供了更好的性能,而且还与对可持续能源解决方案的不断增长的需求保持一致。但是,他们的广泛实施仍然存在重大障碍。硫的电导率较差,这在其使用方面构成了挑战。此外,在循环过程中发生了明显的体积膨胀。进一步的挑战与有机电解质中溶解的嘴唇中间体的电化学溶解和运输有关。上述现象被称为穿梭效应,代表了高效
本研究致力于扩大锂碲硫化电池家族,该电池已被公认为未来储能系统的有前途的选择。在此,一种新颖的电化学方法已被用于设计微纳米 Te x S y 材料,发现 Te x S y 相与多壁碳纳米管结合赋予所构造的锂离子电池优异的循环稳定性和高倍率性能。在材料合成过程中,硫成功嵌入到碲基质中,提高了整体的容量性能。TexSy 被表征并验证为具有Te少、S多的微纳结构材料。与原始纯Te颗粒相比,容量大幅提高,并且有效抑制了体积膨胀变化。组装成Li-Te x S y 电池后,验证了稳定的电接触和锂离子的快速传输能力以及显著的电化学性能。
随着电动汽车和大规模储能系统的开发,现有的商业锂离子电池(LIB)越来越无法满足市场需求。出于这个原因,研究人员探索了各种新型材料系统,以增加电池的能量密度,例如基于合金的阳极,1,2 Li金属阳极,3,4 sul sul sul de-de-de-de-de-de-de de de基基阳极,5 - 7和基于Li-rich的锰的阴极。8,9在其中,硅(SI)被认为是商业石墨阳极的最佳替代品之一,因为它具有高理论能力(4200 mAh g -1)和适当的工作电压(〜0.4 V,vs.li/li/li +)。10然而,静电后,硅的体积膨胀高达300%,而Li +的反复插入和提取诱导了表面上的机械应力和变形,从而导致颗粒的粉碎。11,体积变形会破坏相邻硅颗粒之间或颗粒与当前收集器之间的电气接触,而活性材料可能完全从收集器脱离。10,12此外,硅表面上的固体电解质相(SEI)反复破裂并因硅的体积变形而导致,消耗了大量的电解质和活性锂。13随着时间的流逝,
糖尿病性酮症酸中毒(DKA)是威胁生命的医疗紧急情况,需要立即评估和治疗。它仍然是糖尿病的重要并发症,在全球范围内正在增加。这是一种内分泌并发症,涉及高血糖,阴离子间隙代谢性酸中毒和酮症。It is characterized by hyperglycaemia with glucose is greater than 11 mmol/l (200 mg/dl), capillary/venous pH is less than 7.3, bicarbonate (HCO 3 –) is less than 15 mEq/l, serum anion gap is greater than 16 mmol/l, moderate to severe dehydration is seen and creatinine ratio is increased, and ketones (ketonemia and存在酮尿≥3mmol/L)。它发生在1型糖尿病(T1D)和2型糖尿病(T2D)的患者中;以及早期诊断,监测和治疗对于患者的福利是必需的。DKA的治疗涉及体积膨胀,胰岛素置换和预防低钾血症。DKA可以通过早期识别和开始胰岛素治疗来预防。在这里试图详细讨论DKA的各个方面。
摘要:硅阳极需要机械强度高且电化学稳定的聚合物粘合剂体系,以适应循环操作过程中经历的剧烈体积膨胀。在此,我们报告使用聚(丙烯酸)接枝苯乙烯-丁二烯橡胶(PAA- g- SBR)和 80% 部分中和的 Na-PAA 作为硅石墨阳极的粘合剂体系。PAA- g -SBR 接枝共聚物是通过将丙烯酸叔丁酯接枝到 SBR 上并用 H 3 PO 4 处理中间体合成的。发现 PAA- g -SBR/Na-PAA 粘合剂体系比 Na-PAA/SBR 体系具有更好的电化学性能。Na-PAA/PAA- g -SBR 体系在 130 次循环中具有稳定的 673 mAh g -1 容量保持率,而 Na-PAA/SBR 体系的容量保持率立即下降。 Na-PAA/PAA- g -SBR 体系还表现出更好的机械性能,与 Na-PAA/SBR 体系相比,杨氏模量值更低,失效应变更大。总体而言,这些发现表明,在下一代锂离子电池中,硅阳极应用是一种有前途且坚固的聚合物粘合剂体系。关键词:锂离子电池、硅电极、PAA-g-SBR 聚合物、丙烯酸叔丁酯、交流阻抗、电极粘附、储能应用■ 介绍
锂硫(LI-S)电池的商业化面临着几个挑战,包括因氧化还原穿梭而导致阴极造成的阴极损失的较差,意外的体积膨胀和连续的硫。在这项研究中,我们通过在poly(Ether-thioureas)(Petu)和Poly(3,4-乙基二氧噻吩)之间的简单交联引入新型聚合物 - poly(pedot:pss)作为双面binder-binder-s batteries for li-s batteries for li-s batteries for li-s batteries for li s Batteries(depotes batteries as dive)与聚偏二氟化物(PVDF)相比,经过准备的PPTU表现出明显更高的电导率,促进了电化学反应。此外,PPTU表现出有效的锂多硫纤维吸附,从而通过抑制穿梭效应,从而改善了循环稳定性。我们通过使用同步加速器X射线断层扫描来监测细胞界面的形态变化来研究这种行为。具有PPTU粘合剂的细胞表现出显着的速率性能,所需的可逆性和出色的循环稳定性,即使在严格的弯曲和扭曲条件下也是如此。我们的工作代表了LI-S电池的功能性聚合物粘合剂开发的有希望的进展。2024年科学出版社和达利安化学物理研究所,中国科学院。由Elsevier B.V.和科学出版社出版。这是CC下的开放式访问文章(http://creati- vecommons.org/licenses/4.0/)。
摘要:在学术界和行业中都在做出重大努力,以更好地将锂离子电池电池描述为依赖于从绿色能源存储到电动迁移率增加的应用的技术。锂离子电池中短期和长期体积扩张的测量与多种原因有关。例如,它提供了有关电池和放电周期中电池电池质量和同质性的信息,以及寿命的老化。扩展测量值可用于评估新材料和在细胞生产过程中的终结质量测试的改进。这些测量值还可以通过帮助预测电池的电荷状态和健康状况来表明电池电池的安全性。的扩展测量还可以评估电极和缺陷(例如气体积累和锂电池)的不均匀性。在这篇综述中,我们首先建立了已知的机制,通过这些机制,锂离子电池电池中的短期和长期体积膨胀。然后,我们探讨了触点扩展的接触和非接触量测量的当前最新设备。本评论汇编了现有的文献,概述了旨在通过对单个组件和整个电池电池进行操作的验尸分析来进行现场量扩展测量的各种选项。最后,我们在选择适当的测量技术时讨论了不同的考虑。还考虑了测量设备的成本和所需的空间。选择用于测量电池电池膨胀的最佳方法取决于表征,持续时间,所需分辨率和结果的重复性的目标。
5宁博海洋学研究所,宁波315832,中国在这项工作中,作者提出了一种新型策略,以通过Nano-Graphene空心球从Prussian Blue Analogue CO(CO 3 [CO(CN)6] 2。使用低成本材料的单锅溶液方法设计用于通过不同温度和前体的HCl蚀刻步骤进行退火来合成阴极。这使该前体制造的Li -S电池感到惊讶,表现出了显着的电荷 - 均电稳定性(570.4 mA H G -1(以1C电流密度为1C)和出色的速率性能(1145.5,717.9,672.5 ma Hg -1 in 0.1,1.0,2.0 Ag -1.0,2.0 Ag -1 ag -1 ag -1 ag -1 restive dys crespenty d pertive of。结果表明,稳定的三维多层空心球结构减轻了硫的体积膨胀,这对多硫化物的吸附产生了重大影响,并抑制了“穿梭效应”。此外,在这种结构中,氮的丰富掺杂产生了许多缺陷和活性位点,从而改善了多硫化物的界面吸附。这是CO 3 [CO(CN)6] 2的富有想象力的应用,充当Li-S电池的阴极材料,该材料提供了一种独特的材料设计方法,可以实现用于Li-S电池的硫阴极的高性能。