一家慈善大学柏林大学,弗雷伊大学的公司成员 - 柏林,洪堡 - 苏尼,汉堡大学 - 柏林Zu柏林,柏林卫生研究院,柏林医学心理学系,德国B发展和疾病研究计划,美国加利福尼亚大学,美国伊尔维亚郡,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国。俄勒冈州波特兰市,俄勒冈州健康与科学大学,神经病学系,波特兰市,俄勒冈州俄勒冈州俄勒冈州健康与科学大学,行为神经科学系,俄勒冈州波特兰市,俄勒冈州俄勒冈州健康与科学大学,美国俄勒冈州健康科学学院卡罗来纳州,美国教堂山,美国j精神病学和人类行为部门,妇产科,流行病学,加利福尼亚大学,加利福尼亚大学,美国加利福尼亚大学
图1冠状组织学切片(Kluver Barrera染色)和Ex Vivo 0.2×0.2×0.2×0.2 mm 3 MRI在海马头(A,B),身体(C,D)和尾部(E,G)的同一主题中。组织学部分中的黑线划分了子场之间的细胞结构边界,该专家以全0.5×0.5μm2分辨率分析数字组织学部分的专家追踪。绿色箭头指向辐射分子(SRLM)层,在MRI中显得不高。请注意,Cornu氨和下调的宽度取决于SLRM的位置,SLRM的位置是分割子场(黄线)的关键地标。此外,在离体MRI上,可以看到牙槽(外部低位带,红色箭头),这有助于划定海马的外边界,尤其是其数字(白色星号)。ca,Cornu Ammonis,sub,subiculum(包括前和副副总统),DG,Dentate Gyrus
在保持满意度的视觉质量的同时最大程度地减少带宽消耗,成为体积内容交付的圣杯。但是,由于要流的3D数据,严格的延迟需求以及高计算工作量,实现这一雄心勃勃的目标对于移动混合现实现实耳机可能充满挑战,这可以自然地使观众的动作具有六个自由度,但计算能力有限。以我们对50多名参与者的眼动作的批判性观察的激励,在本文中,我们提出了Theia,这是一种首要的视线驱动的和感知感知的感知式含量内容交付系统,有效地将以下创新纳入了整体系统中:(1)(1)实时创建FolumeTed网络数据的网络数据,以减少网络数据的真实创建; (2)效率增强动脉糊化内容以促进用户体验; (3)基于眼动的自适应省略外围含量以进一步节省带宽。我们使用Microsoft Hololens 2个耳机实现了Theia的原型,并广泛评估其性能。我们的结果表明,与最新技术相比,Theia可以将带宽的消耗量大幅减少高达67.0%,并将视觉质量提高高达92.5%。
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。
1 清华大学生命科学学院、膜生物学国家重点实验室、北京生物结构前沿研究中心、IDG/麦戈文脑研究所、新基石科学实验室,北京 100084。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。
基于神经影像的脑年龄是一种通过机器学习 (ML) 预测生成的生物标记。脑年龄差距 (BAG) 通常定义为预测脑年龄与实际年龄之间的差异。研究一致报告称,精神分裂症 (SCZ) 患者的 BAG 呈阳性。然而,人们对哪些特定因素驱动基于 ML 的脑年龄预测知之甚少,导致对 BAG 的生物学解释有限。我们从三个公开数据库(COBRE、MCIC 和 UCLA)和一个早期精神分裂症的额外数据集(TOPSY)(82.5% 未接受治疗的首发样本)收集数据,并使用预训练的梯度提升树计算脑年龄。然后,我们应用 SHapley 加性解释 (SHAP) 来确定哪些脑特征会影响脑年龄预测。我们研究了每个特征和组的 SHAP 分数与 BAG 之间的相互作用。这些分析确定了总灰质体积(组 × SHAP 交互项 β = 1.71 [0.53; 3.23]; p 相关 < 0.03)是影响 SCZ 中观察到的 BAG 的特征,这些特征是最能预测大脑年龄的大脑特征之一。其他大脑特征在 SCZ 和 HC 之间的 SHAP 值也存在差异,但它们与 BAG 没有显著关联。我们将研究结果与非精神病性抑郁症数据集(CAN-BIND)进行了比较,其中相互作用并不显著。这项研究对于理解大脑年龄预测模型和 SCZ 中的 BAG 以及可能在其他精神疾病中的 BAG 具有重要意义。
为了提高晶体管的密度、提高性能、降低功耗和降低每个晶体管的成本,人们对晶体管尺寸的要求推动了接触多晶硅间距 (CPP) 的缩小,如图 1 和图 2 所示,这反过来又需要缩小栅极长度以释放更多空间来降低接触电阻。由于金属栅极图案的空间有限,RMG 的持续缩小对 7nm 及更高技术的多 Vt 提出了挑战。此外,自对准接触 (SAC) 成为未来技术节点上提高器件成品率的关键要素。因此,需要采用简化的 RMG 堆叠集成方案来确保良好的栅极凹槽控制和均匀的 SAC 封装。由不同栅极金属厚度 (金属多 Vt) 实现的多 Vt 选项将在大幅缩小间距时面临可扩展性挑战。在这项工作中,我们提出了一种无体积多 Vt 解决方案来定义具有不同偶极子层厚度的所有 Vt 类型。氧化物偶极子层与基于 SiOx 的界面层 (IL) 相互作用,产生 Vt 偏移,伴随其基团电负性差异 [6]。所提出的方案被证明与双 WFM 工艺兼容,并且由于其体积小,可适用于高度缩放的设备和新颖的设备架构。在同一芯片上集成多个偶极子厚度非常具有挑战性,因为偶极子厚度非常薄,通道可能会受到图案损坏。在本文中,我们
1000 mV s −1,电荷转移电阻更低,电化学活性表面积比 2H-MoS 2 电极高出近十倍。此外,1T ʹ -MoS 2 电极在 CDI 实验中表现出 65.1 mg NaCl cm −3 的出色体积脱盐容量。原位 X 射线衍射 (XRD) 表明,阳离子存储机制随着 1T ʹ -MoS 2 中间层的动态扩展而发生,以容纳 Na + 、K + 、Ca 2 + 和 Mg 2 + 等阳离子,从而提高了容量。理论分析表明,1T ʹ 相在热力学上优于 2H 相,离子水合和通道限制在增强离子吸附中也起着关键作用。总的来说,这项工作为设计具有高体积性能的紧凑型二维层状纳米层提供了一种新方法,用于 CDI 海水淡化。