光力学晶体腔(OMCC)是广泛现象和应用的基本纳米结构。通常,此类OMCC中的光力相互作用仅限于单个光学模式和独特的机械模式。从这个意义上讲,消除单个模式约束(例如,通过添加更多的机械模式)应启用更复杂的物理现象,从而产生多模光学相互作用的背景。然而,仍然缺少一种以控制方式以多种机械模式产生多种机械模式的一般方法。在这项工作中,我们提出了一条途径,将多种GHz机械模式限制在与OMCC工程相似的光学耦合率(最高600 kHz)的相同光场的途径。本质上,我们在腔中心和镜像区域之间的绝热过渡中增加了单位细胞的数量(由圆形孔在其两侧的圆形孔中穿孔)。值得注意的是,我们的空腔中的机械模式位于完整的语音带隙内,这是在低温温度下实现超高机械Q因子的关键要求。使用标准的硅纳米技术在完整的语音带隙中的多模bevavior和实现的简单性使我们的OMCC对在经典和量子领域中的应用高度吸引人。
通过改变横截面积、周期性和填充因子,我们可以对可能的晶胞进行网格搜索。在图 S.1B 中,我们绘制了正文中腔 C 1 的镜像晶胞的完整准 TE 能带图。为了使发射器耦合到腔体,有必要移动能带,使得导模存在于目标频率。这可以通过修改晶胞的周期性来实现,同时保持所有其他参数不变。如图 S.1C 所示,降低孔的周期性会将准 TE 模式移至更高的频率。腔体孔的数量和从镜像区域到腔体的啁啾的函数形式决定了引入的缺陷模式的绝热性。我们使用二次啁啾函数,其中腔体区域中给定晶胞的周期性由下式给出
通过改变横截面区域,周期性和填充因子,我们可以对可能的单位细胞进行网格搜索。在图S.1b中,我们从主文本中绘制了腔c 1的镜像单元电池的完整准频段图。要使发射极夫妇搭配到腔,必须移动频带,以使目标频率以引导模式存在。这可以通过修改单位单元的周期性,同时将所有其他参数固定来实现。如图S.1c所示,降低了孔的周期性,将准TE模式移至较高的频率。从镜像区域到腔区域的腔孔的数量和chirp的功能形式决定了引入的缺陷模式的副词。我们使用二次chirp函数,其中给定单位细胞在腔区域中的周期性由
4。Results .......................................................................................................................... 59
光子晶体腔 (PhCC) 可以将光场限制在极小的体积内,从而实现高效的光物质相互作用,以实现量子和非线性光学、传感和全光信号处理。微制造平台固有的纳米公差可能导致腔谐振波长偏移比腔线宽大两个数量级,从而无法制造名义上相同的设备阵列。我们通过将 PhCC 制造为可释放像素来解决此设备可变性问题,这些像素可以从其原生基板转移到接收器,在接收器中有序的微组装可以克服固有的制造差异。我们在一次会话中演示了 119 个 PhCC 中的 20 个的测量、分箱和传输,产生了空间有序的 PhCC 阵列,21 按共振波长排序。此外,设备的快速原位测量首次实现了 PhCC 对打印过程的动态响应的测量,在几秒到 24 小时的范围内显示出塑性和弹性效应。25
量子点是电信单光子源的有希望的候选者,因为它们的发射可以在不同的低损耗电信波段上进行调谐,从而与现有的光纤网络兼容。它们适合集成到光子结构中,可以通过 Purcell 效应增强亮度,从而支持高效的量子通信技术。我们的工作重点是通过液滴外延 MOVPE 创建的 InAs/InP QD,以在电信 C 波段内运行。我们观察到 340 ps 的短辐射寿命,这是由于 Purcell 因子为 5,这是由于 QD 集成在低模体积光子晶体腔内。通过对样品温度的原位控制,我们展示了 QD 发射波长的温度调谐和在高达 25K 的温度下保持的单光子发射纯度。这些发现表明基于 QD 的无低温 C 波段单光子源的可行性,支持其在量子通信技术中的应用。
石墨烯具有有希望的物理和化学特性,例如高强度和柔韧性,再加上高电导率和热导率。因此,它被整合到基于聚合物的复合材料中,以用于电子和光子学应用。与石墨烯发育相关的主要约束是,具有强疏水性,几乎所有分散体(通常是其处理和处理所需施用所必需的)都是在有毒的有机溶剂中制备的,例如N-甲基吡咯烷酮或N,N,N-二甲基甲酰胺。在这里,我们描述了如何使用球磨机制备去角质石墨。通过电子显微镜和拉曼光谱法测量,产生的石墨烯平均为三到四层厚,直径约500 nm。可以以光实体的形式存储;并且很容易分散在水性媒体中。我们的方法包括四个主要步骤:(i)有机分子(三聚氰胺)在石墨中的机械化学插入,然后在水中悬浮; (ii)洗涤悬浮石墨烯以消除大多数三聚氰胺; (iii)稳定石墨烯片的隔离; (iv)冻结以获得石墨烯粉末。该过程分别用于水性悬浮液和干粉末的6-7或9-10 d。该产品具有明确的属性,可用于许多科学和技术应用,包括毒理学影响评估和创新医疗设备的生产。
作者:E Demirkan · 被引用 1 次 — 抗菌肽是最重要的防御成分,目前被认为是抵御微生物感染的通用宿主防御工具(Valembois 等...