摘要 最近证明了非相对论量子公式可以从扩展的最小作用量原理 Yang (2023)。在本文中,我们将该原理应用于大质量标量场,并推导出标量场的波函数薛定谔方程。该原理通过考虑两个假设扩展了经典场论中的最小作用量原理。首先,普朗克常数定义了场需要表现出可观测的最小作用量。其次,存在恒定的随机场涨落。引入一种新方法来定义信息度量来衡量由于场涨落而产生的额外可观测信息,然后通过第一个假设将其转换为额外作用量。应用变分原理来最小化总作用量使我们能够优雅地推导出场涨落的跃迁概率、不确定关系和波函数的薛定谔方程。此外,通过使用相对熵的一般定义来定义场涨落的信息度量,我们得到了依赖于相对熵阶数的波函数广义薛定谔方程。我们的结果表明,扩展的最小作用原理既可用于推导非相对论量子力学,也可用于推导相对论量子标量场理论。我们期望它可以进一步用于推导非标量场的量子理论。
摘要 我们证明了非相对论量子力学的公式可以从一个扩展的最小作用量原理中推导出来。这个原理可以看作是经典力学最小作用量原理的扩展,因为它考虑了两个假设。首先,普朗克常数定义了一个物理系统在其动力学过程中为可观测所需表现出的最小作用量。其次,沿经典轨迹存在恒定的真空涨落。我们引入了一种新方法来定义信息度量来测量由于真空涨落引起的额外可观测性,然后通过第一个假设将其转换为额外作用量。应用变分原理来最小化总作用量使我们能够恢复位置表象中的基本量子公式,包括不确定性关系和薛定谔方程。在动量表象中,可以应用同样的方法得到自由粒子的薛定谔方程,而对于具有外部势的粒子仍需要进一步研究。此外,该原理在两个方面带来了新的结果。在概念层面,我们发现真空涨落的信息度量是玻姆量子势的起源。尽管二分系统的玻姆势不可分,但底层的真空涨落是局部的。因此,玻姆势的不可分性并不能证明两个子系统之间存在非局部因果关系。在数学层面,使用更一般的相对熵定义量化真空涨落的信息度量会得到一个取决于相对熵阶数的广义薛定谔方程。扩展的最小作用原理是一种新的数学工具。它可以应用于推导其他量子形式,例如量子标量场论。
狄拉克和费曼是第一批理解作用量在量子力学中的作用的人。狄拉克的动机源于希望获得一种量子力学公式,其中时间和空间变量以类似的方式处理。让我提醒你,在量子力学的通常公式中,量子系统在初始时间被指定为在与哈密顿量和它们之间交换的一组完整算符的本征态中选择的某个状态。然后使用哈密顿量来查找系统在稍后时间 t 处于哪种状态。继续计算从 t 0 时的状态 S 0 到 t 时的状态 S 的跃迁幅度,等等。如你所见,时间在这个描述中起着核心作用,但对于相对论系统来说,人们会感到不安,因为即使最终答案是相对论不变的,理论的明显洛伦兹不变性也会丢失。因此,狄拉克开始寻找一种不以时间为核心的公式。为此,他回到了经典力学,那里有两种(类似的)描述:汉密尔顿的描述从头开始单独指出时间,而拉格朗日的描述则没有。具体来说,他寻找经典力学中 AF 的含义,目的是将其推广到量子力学。答案当然是已知的,作用量是正则变换的生成器,它将系统从一个时间带到另一个时间。因此,重新回忆一下正则变换是有益的:
热场复偶(TFD)是反德西特/共形场论(AdS/CFT)对应关系中的一种特殊状态[1],它将 D + 1 维反德西特空间中的假定量子引力理论与维度 D 边界上的共形场论联系起来。黑洞发射热辐射[2],实际上在外部留下一个热密度矩阵。以色列[3]指出,通过考虑热场复偶可以重现可观测量的计算,类似于史瓦西几何的最大延伸。后来,马尔达西那[4]在 AdS/CFT 的背景下推测,边界 CFT 的 TFD 应该对应于 AdS 中永恒的双面黑洞。存在于相差一维的理论之间的对偶性这种想法通常被称为全息论。为了检验这种二元性,考虑可穿越虫洞现象是很有趣的,这是 AdS/CFT 的一个惊人预测。从引力的角度来看,黑洞两侧的边界显然不能因果通信。虽然有一个空间虫洞连接两个外部区域,但人们无法穿越它而不落入黑洞奇点。如果爱丽丝和鲍勃在对立面,他们就无法相遇,除非他们一起跳进黑洞。Gao、Jafferis 和 Wall [ 22 ] 的最新进展表明,两种边界理论的特定耦合会产生负能量冲击,使 TFD 状态下的虫洞可穿越。换句话说,鲍勃可以与爱丽丝团聚而不会被吸入黑洞。作为此协议以及 AdS/CFT 中许多其他思想实验的起点,人们假设可以访问 TFD 状态。一个很有前途的用于探测 AdS/CFT 的量子力学系统是 Sachdev-Ye-Kitaev (SYK) 模型 [5,6]。例如,它在低能下表现出共形对称性,其动力学由 Schwarz 作用量支配 [7]。相同的作用量支配着一种被称为 Jackiw-Teitelboim 引力的二维量子引力理论 [8,9]。此外,它已被证明会在低温下使混沌界限饱和,这也是黑洞最大扰乱的标志 [10,11]。在参考文献 [12] 中,作者在近 AdS2 中构造了永恒可穿越虫洞解,并表明两个耦合 SYK 模型的低能极限具有相同的作用量。一个关键结果是,他们表明 SYK 模型的 TFD 可以很好地通过具有小相互作用的双边哈密顿量的基态来近似。在本研究中,我们考虑了在噪声中尺度量子 (NISQ) [ 13 ] 设备上准备 SYK 模型的 TFD 的状态的任务。参考文献 [ 14 ] 中考虑了准备任意理论的 TFD 的更一般任务。同样,该策略是构建一个哈密顿量,其基态编码了 TFD 结构。虽然方程中的哈密顿量文献 [ 12 ] 中的 (3.21) 可以看作文献 [ 14 ] 中构造的略微特殊版本,我们将在本文中使用它,因为它相对简单。这两种方法都考虑使用辅助浴将系统绝热冷却到基态。在这里,我们采用变分法,从参数可调的量子电路假设开始。这样就不需要辅助系统了。类似的方法曾用于构造 Ising 模型的 TFD [ 15 ]。简而言之
其中 ρ 是量子态,U ∈ U ( H ) ,φ U 表示每个单调度量张量 G 的等距同构,因为在代表经典粗粒化量子版本的完全正、保迹映射下,单调性是必须的 [ 35 , 40 ]。从无穷小角度来看,作用量 φ 可以用 S + 上的基本矢量场来描述,从而提供酉群李代数 u ( H ) 的反表示。这些矢量场用 X b 表示,其中 b 是 H 上的埃尔米特算子(第 2 节将对此进行详细介绍),对于所有单调度量张量来说,它们都是 Killing 矢量场,因为 U ( H ) 通过等距同构起作用。现在,李代数 u(H) 是 H 上有界线性算子空间 B(H) 的李子代数,具有由线性算子之间的交换子 [·,·] 给出的李积。特别地,可以证明 B(H)(具有 [·,·])同构于 U(H) 复数化的李代数,即 H 上由可逆线性算子组成的李群 GL(H) 的李代数。此外,已知 [9,15,26,27] GL(H) 作用于流形 S + ,更一般地作用于整个量子态空间 S ,根据
药物输送系统的方法,生产技术,存储系统和技术用于操纵其目标网站的药物化合物,以实现所需的治疗影响区域单元,该单元被称为药物输送,以增强患者的有效性和安全性,与药物准备,站点的目标,特定于特定的目标,特定于特异性的,毒性,毒性和毒性区域和毒性区域相关的原理。药物输送旨在通过虐待在整个制定过程中通过虐待多种赋形剂,药物携带者和医疗设备来改变药物的药理学和特异性,以增强临床结局,而将额外的重点放在增加药物的生物利用度和作用量上。一些研究集中在增强联合国机构的保护方面,主管药物。作为副学位示例,为了减少一旦施用疫苗和不同药物的针刺损伤的机会,就会创建许多样式的微针斑块。药物输送可能是与剂量排序和给药途径密切相关的术语,后者在某些含义中被包围。虽然术语的给药途径和药物输送面积单元通常可以互换使用,但这些区域单位分开。
其中,k B 为玻尔兹曼常数,X 为相关相空间体积,是微观状态数量的量度。注意,上述定义中需要使用对数,以使玻尔兹曼统计熵具有与热力学熵相同的加性。后来,克劳德·香农发现,可以使用与玻尔兹曼公式类似的公式(尽管符号相反)来量化信号的信息内容。继香农之后,人们通常将熵等同于系统的(缺乏)信息或“无序”。由于信息是一个渗透到许多自然科学中的概念,熵的概念很快传播到其他领域,例如生物学和遗传学。约翰·冯·诺依曼将玻尔兹曼熵推广到量子物理学。这实际上不仅仅是一种概括。事实上,方程 (1) 有点问题,因为 X 具有相空间体积的维度,而对数的参数应该是无量纲的——更不用说 SB 可以变为负值。但考虑到量子力学引入了由普朗克常数 h 给出的最小作用量,玻尔兹曼公式可以改写为:SB = k ln( X / hd )(其中 d 是系统的维数),只要 X hd ,它就始终为非负,并且只有当等号成立时它才为零。就离散量子
其中,k B 为玻尔兹曼常数,X 为相关相空间体积,是微观状态数量的量度。注意,上述定义中需要使用对数,以使玻尔兹曼统计熵具有与热力学熵相同的加性。后来,克劳德·香农发现,可以使用与玻尔兹曼公式类似的公式(尽管符号相反)来量化信号的信息内容。继香农之后,人们通常将熵等同于系统的(缺乏)信息或“无序”。由于信息是一个渗透到许多自然科学中的概念,熵的概念很快传播到其他领域,例如生物学和遗传学。约翰·冯·诺依曼将玻尔兹曼熵推广到量子物理学。这实际上不仅仅是一种概括。事实上,方程 (1) 有点问题,因为 X 具有相空间体积的维度,而对数的参数应该是无量纲的——更不用说 SB 可以变为负值。但考虑到量子力学引入了由普朗克常数 h 给出的最小作用量,玻尔兹曼公式可以改写为:SB = k ln( X / hd )(其中 d 是系统的维数),只要 X hd ,它就始终为非负,并且只有当等号成立时它才为零。就离散量子
其中 ρ 是量子态,U ∈ U ( H ) ,φ U 表示每个单调度量张量 G 的等距同构,这是因为在完全正的、保迹映射下必须具有单调性,这代表了经典粗粒化量子版本 [ 35 , 40 ]。从无穷大的角度来看,作用量φ可以用 S + 上的基本矢量场来描述,从而提供了酉群李代数 u ( H ) 的反表示。这些矢量场用 X b 表示,其中 b 是 H 上的埃尔米特算子(有关更多信息,请参见第 2 节),对于所有单调度量张量来说,它们都是 Killing 矢量场,因为 U ( H ) 通过等距同构起作用。现在,李代数 u ( H ) 是 H 上有界线性算子空间 B ( H ) 的李子代数,具有由线性算子之间的交换子 [· , ·] 给出的李积。特别地,可以证明 B ( H )(具有 [· , ·] )同构于 U ( H ) 复数化的李代数,即 H 上由可逆线性算子组成的李群 GL ( H ) 的李代数。此外,已知 [ 9 , 15 , 26 , 27 ] GL ( H ) 作用于流形 S + ,更一般地作用于整个量子态空间 S ,根据
实习项目 2025 珍妮·库尔特 研究远非平衡态电子-声子流体动力学输运 在某些条件下,某些材料中的热量和电荷输运可以用流体动力学方程描述。近期研究将电子的稳态流体动力学方程[1]与声子的粘性热方程统一起来,得到了一组更通用的“粘性热电方程”,描述了电子和声子协同产生流体动力学效应的状态。VTE是在接近平衡态的稳态下推导出来的。本项目将VTE扩展到远非平衡态输运现象,这些现象出现在i)导致响应延迟的高频扰动,以及ii)驱动弹道输运和流体动力学输运耦合的空间不均匀性。本项目将涉及理论开发以及扩展Phoebe程序包[3]的计算工作。[1] Gurzhi. Sov. Phys. Uspekhi 11, 255 (1968) [2] Simoncelli, Marzari, Cepellotti, PRX 10, (2020)。[3] https://github.com/phoebe-team/phoebe Olivier Gauthé 有限温度下的多体局部化 多体局部化 (MBL) 是一种有趣的现象,出现在强无序的相互作用量子系统中 [1]。这样的系统在淬火后不会热化,并且会在很长一段时间内保留初始信息。这种现象可以在具有随机局部场的一维自旋链中观察到。张量网络是一种成熟的方法,用于模拟依赖于高维数据低秩近似的强关联系统。使用