简介在2017年早些时候,我们在Uthaim线程中讨论了当前传送带放大器如何也可以用作IV转换器[1]。Uthaim利用了东芝JFET输入对,偏向于8mA。这些JFET当然很难获得。自然的问题是,我们如何用BJT替换JFET。偶然地遇到了Toshiyuki Beppu [2,2a]的1999年跨阻力IV电路。虽然这本质上是一个OPAMP IV电路,但输入阶段使用电流镜的原理显示了互补BJT对的简单偏置电路。也有John Broskie [2B]在2012年发表的类似巡回赛。而不是根据BEPPU使用第二电流放大阶段,然后用NFB关闭环路,而是只能将Uthaim的其余部分用于IV转换,包括输出缓冲区。当然,IV转换器不需要像Uthaim中的强大输出缓冲区。一个简单的A类BJT发射极追随者足以驱动下游阶段的典型载荷。整个电路由不超过3对互补电流镜,还有10个电阻组成。在Internet上进行了一些进一步的搜索,揭示了与上述[3,4]的非常相似的电路。实际上,我们在2011年也发表了类似的内容[5]。正如Jan Didden所说,您可以将其视为开放循环和A类简化的AD844(或平行的8倍)。那么,为什么现在要恢复呢?当时,JFET含量丰富,几乎没有HFE的单片双BJT可供选择(2SC3381BL / 2SA1349BL)。今天的情况是完全逆转的,并且像Nexen这样的SMD组件建立小型IV模块的想法相当吸引人[6]。Rutgers的确报告了相对较差(模拟)的性能,即使在低输出水平为0.25V的情况下,H3也为0.04%。尽管他选择的晶体管具有很低的电容,但HFE也很低(〜80)。通过选择高HFE(〜400)的Toshiba SMD低噪声双晶体管,我们的模拟
摘要:电力已成为我们所有人最抢手的便利设施。电力仅限于城市的时代已经一去不复返了。现在,它已经覆盖了世界每个遥远的地方。所以我们现在有一个复杂的电力系统网络。这种电力由输电线路传输。这些故障的发生是自然的。这些故障会损坏许多重要的电气设备,如变压器、发电机、输电线路。对于不间断电源,我们需要尽可能地防止这些故障。线路在输送电力时要延伸很长的距离,因此,该项目需要在尽可能短的时间内检测到故障。用于这些故障检测的基于微处理器和微控制器的系统发展迅速。本文模拟了使用 PIC 微控制器和 ADC 电流传感器检测故障的数值过流继电器。这些继电器比传统的机电继电器和静态继电器更可靠,响应更快。它们具有更大的设置范围、更高的精度、更小的尺寸和更低的成本,以及许多其他功能,例如故障事件记录、自动复位等。使用基于智能 GSM 的故障检测和定位系统来充分准确地指示和定位发生故障的确切位置。这将确保技术人员更短的响应时间来纠正这些故障,从而帮助避免变压器损坏和灾难。该系统使用电流变压器、电压变压器、PIC 16F877 微控制器、RS-232 连接器和 GSM 调制解调器。该系统自动检测故障、分析和分类这些故障,然后使用基于阻抗的算法方法计算故障与控制室的距离。最后,故障信息被传输到控制室。该项目是关于设计数字继电器,当输入值超过继电器中设置的参考值时,检测到故障,然后向断路器发出跳闸信号。总之,由于系统自动准确地提供准确的故障位置信息,因此定位故障所需的时间大大减少。关键词:PIC 微控制器、ADC 电流传感器、GSM。
• 车辆说明书应明确说明如何将车辆置于测功机模式(见下文)、如何将车辆置于空档、所需的电流钳数量以及如何安装它们以及如何读取电压。制造商必须包括测试车辆独有的任何特殊说明。这可能包括如何使用历史上称为“钥匙”的东西、如何“启动”车辆以及如何使车辆进入“休眠”状态。任何可能干扰测试的项目,如车门打开、引擎盖打开或安全带解开时车辆自动禁用,都应详细说明和强调,这些项目无法通过测功机模式或其他方式关闭。 • 车辆说明书应包括在 MCT 的两个恒速部分上实现的预期时间和距离。如果没有提供这些值,EPA 可能会使用 SAE J1634-12 中的公式为测试中期恒速循环 (CSC M ) 和测试结束时恒速循环 (CSC E ) 设置预期距离。 • 车辆必须有 CD-16-03 中所述的用于底盘测功机测试的固定装置。 • EPA 必须使用 EPA 自己的电流钳进行电流测量。 • 车辆应有清晰标记的电流钳连接位置和电压抽头(如果使用电压抽头)。车辆说明应包括安全安装车辆电流钳的详细说明。制造商必须指明电流流动的方向以及他们希望如何安装电流钳。EPA 实验室现在使用电流惯例,即负电流流出电池(放电)和正电流流入电池(充电)。 • EPA 更喜欢在电压抽头上使用 Pomona #6383-02 连接(通常称为“带护套的香蕉插头”)。如果由于技术原因您无法安装这种类型的连接,请通知您的认证工程师。 • 不提供电压抽头并需要 CAN 数据采集来测量电压的车辆可能会导致测试数据计算延迟。制造商应在预期结果时间中额外预留最多一周的时间。如果制造商可以提供包含参数信息的 .dbc 文件,EPA 能够使用其测试单元控制器读取 CAN 消息。如果制造商将提供第三方数据记录器,则他们必须提供电池电压、车速和时间对齐数据,然后才能提交给实验室进行处理。• 如果您的车辆需要四个以上的电流钳,请在测试前告知您的认证工程师。在这些情况下,制造商还应提供有关如何在测试数据采集中使用不同电流钳的详细说明,例如加法、减法等。• 如果需要起重机来安装电流钳或电压接头,请在测试前告知您的认证工程师。请告知是否需要任何特殊工具
背景和目标:本文首次设计并介绍了一种基于电流镜和折叠级联拓扑组合的新型折叠镜 (FM) 跨阻放大器 (TIA) 结构。跨阻放大器级是接收器系统中最关键的构建块。这种新型拓扑基于电流镜拓扑和折叠级联拓扑的组合,采用有源元件设计。其理念是在输入节点使用电流镜拓扑。在所提出的电路中,与许多其他已报道的设计不同,信号电流(而不是电压)被放大直到到达输出节点。由于使用二极管连接的晶体管作为电流镜拓扑的一部分,所提出的 TIA 具有低输入电阻的优势,这有助于隔离主要输入电容。因此,以相当低的功耗实现了 5Gbps 的数据速率。此外,设计的电路仅使用了六个有源元件,占用的芯片面积很小,同时提供 40.6dBΩ 的跨阻抗增益、3.55GHz 频率带宽和 664nArms 输入参考噪声,并且仅消耗 315µW 功率和 1V 电源。结果证明了所提出的电路结构作为低功耗 TIA 级的正确性能。方法:所提出的拓扑基于电流镜拓扑和折叠级联拓扑的组合。使用 Hspice 软件中的 90nm CMOS 技术参数模拟了所提出的折叠镜 TIA 的电路性能。此外,对晶体管的宽度和长度尺寸进行了 200 次蒙特卡罗分析,以分析制造工艺。结果:所提出的 FM TIA 电路提供 40.6dBΩ 跨阻增益和 3.55GHz 频率带宽,同时使用 1V 电源仅消耗 315µW 功率。此外,由于分析通信应用中接收器电路中输出信号的质量至关重要,所提出的 FM TIA 对于 50µA 输入信号的眼图打开约 5mV,而对于 100µA 输入信号,眼图垂直打开约 10mV。因此,可以清楚地显示眼图的垂直和水平开口。此外,跨阻增益的蒙特卡罗分析呈现正态分布,平均值为 40.6dBΩ,标准差为 0.4dBΩ。此外,FM TIA 的输入电阻值在低频时等于 84.4Ω,在 -3dB 频率时达到 75Ω。通过对反馈网络对输入电阻的影响的分析,得出了在没有反馈网络的情况下,输入电阻可达1.4MΩ,由此可见反馈网络的存在对于实现宽带系统的重要性。结论:本文本文介绍了一种基于电流镜拓扑和折叠级联拓扑组合的跨阻放大器,该放大器可放大电流信号并将其转换为输出节点的电压。由于输入节点存在二极管连接的晶体管,因此 TIA 的输入电阻相对较小。此外,六个晶体管中有四个是 PMOS 晶体管,与 NMOS 晶体管相比,它们的热噪声较小。此外,由于前馈网络中未使用无源元件,因此所提出的折叠镜拓扑占用的片上面积相对较小。使用 90nm CMOS 技术参数的结果显示,跨阻增益为 40.6dBΩ,频率带宽为 3.55GHz,输入参考噪声为 664nArms,使用 1 伏电源时功耗仅为 315µW,这表明所提出的电路作为低功耗构建块的性能良好。