総合研究栋b110“ 2D材料作为非常规环境的保护涂层” Hisato Yamaguchi,Los Alamos国家实验室国立ロス・アラモス国立研究所 国立ロス・アラモス国立研究所 国立ロス・アラモス国立研究所 国立ロス・アラモス国立研究所尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登尚登山口尚登尚登山口尚登尚登山口尚登山口山口山口山口山口山口尚登山口研究员山口山口山口山口山口山口研究员研究员山口山口山口山口山口山口山口山口山口山口山口山口山口山口山口山口原子上的石墨烯层薄层,以通过直接阻断腐蚀反应物(例如氧气)(氧气,而与受保护的材料性能最少交替)来保护表面。原子薄度的高度抗腐蚀性能对于在非常规环境下的应用数量很有吸引力。一个例子是保护粒子加速器的电子源。高量子效率半导体光(由碱元素组成,因此需要10 -10 Torr/10 -8 PA的超高真空才能保持其性能。为了保护这种表面,不仅涂料需要表现出高气势屏障的性能,而且还需要在原子上稀薄,以使光电子有效地逃脱到真空中。另一个例子是对核应用的actinides的保护。系统通常无法在常规涂层的〜微米厚度下忍受杂质包含,因此涂料需要厚度〜Nanomer厚。在本演讲中,我将向上述两个应用程序介绍我们的进度。关于粒子加速器电子源的保护,我们证明了3个数量级增加了3个数量级的碱抗抗氧化物半导体光电座的主动压力增加,并在2019年赢得了R&D 100奖。我们最近开始保护肌动剂,并证明了针对氢腐蚀的寿命增强。
摘要。城市地区的运输正在通过各种车辆进行转变,而电子驾驶员的增长最快。尽管他们很受欢迎,但电子示威者仍面临不兼容的充电器等问题,尤其是租赁服务问题。无线充电是通过无需用户干预的电池充电而作为解决方案的。本文重点介绍了针对电子弹药机的磁性充电器的设计和开发。这项研究详细介绍了恒定电流恒定电压(CC-CV)电荷的线圈拓扑,间隙定义和优化控制。目前的关键贡献是对这些因素的综合考虑以及车辆的材料和结构,以精确设计和实施。车辆的尺寸显着限制了线圈设计。因此,在过去,使用ANSYS MAXWELL进行了详细的分析,以确定实际电子弹药机中主要和次要线圈的最佳位置。此分析导致了线圈几何形状的最佳设计,从而最大程度地减少了成本。拟议的系统已通过真实的原型进行了验证,并结合了CC-CV控制,以确保为各种电池状态提供安全充电,并适用于广泛的E型驾驶员,从而增强了此类充电器在公共装置中的可用性。
抽象的仪器电池电池(即包含传感器的那些)和智能电池(具有集成控制和通信电路)对于开发下一代电池技术(例如钠离子电池(SIB))至关重要。参数的映射和监视,例如温度梯度的量化,有助于改善单元格设计并优化管理系统。必须保护集成的传感器免受严酷的电解环境。最先进的涂料包括使用Parylene聚合物(我们的参考案例)。我们将三种新型涂料(基于丙烯酸,聚氨酯和环氧树脂)应用于安装在柔性印刷电路板(PCB)上的热敏电阻阵列。我们系统地分析了涂料:(i)电解质小瓶中的PCB浸没(8周); (ii)分析插入硬币细胞的样品; (iii)分析1AH小袋SIBS的传感器和细胞性能数据。基于钠的液体电解质,由溶解在碳酸乙烯酸乙酯和碳酸二乙二烯的混合物中的1 m溶液(NAPF 6)的比例为3:7(v/v%)的混合物组成。我们的新型实验表明,基于环氧的涂层传感器提供了可靠的温度测量。与戊烯传感器相比,观察到的出色性能(据报道,一个样品的错误结果,在电解质中浸入5 d以下)。核磁共振(NMR)光谱在大多数测试的涂层的情况下显示,在暴露于PCBS涂抹的不同涂层期间发生了其他物种。基于环氧的涂层表现出对电解环境的韧性,并且对细胞性能的影响最小(与未修饰的引用相比,在2%的硬币细胞中,容量降解在2%以内,小袋细胞的3.4%以内)。这项工作中详细介绍的独特方法允许传感器涂层在现实且可重复的细胞环境中进行试验。这项研究首次证明了这种基于环氧树脂的涂层使可扩展,负担得起和弹性的传感器能够集成到下一代智能SIBS上。
摘要:本文结合并回顾了有关环氧聚合物树脂中各种潜在纳米燃料元件的性能的实验研究,这些元素被用作金属底物的保护性涂层。通过在环氧基质中分散二氧化硅,氧化铝,氧化钛,氧化钛,石墨氧化物和纳米粘土而形成的环氧复合材料在腐蚀抗性,粘附强度和分散性质的角度研究。本文涵盖了具有单元素增强颗粒的环氧纳米复合材料的研究,以及两个不同元素的混合物,这些元素被用作加固填充剂。讨论证人的各种腐蚀性保护评估技术,例如电化学研究,粘附测试,盐喷雾测试及其结果,并进行了分析,以概述环氧基质中纳米纤维的性能。