基于脑部计算机接口(BCI)和神经活动中的次生或第三级副产物产生的脑机制接口(BCI)和医学图像,在临床诊断,患者监测和生物医学研究中广泛使用。因此,如何进行有效检测,分析和研究生物医学信号对人类研究生命现象和医学科学的重要性非常重要。最近,机器学习技术,尤其是深度学习,具有明显的先进的生物医学信号分析。遵循这一行,本研究主题中所考虑的文章表明,这种知识领域正在迅速扩展,并且在过去几年中取得了巨大的进步。在生物医学信号分析中使用先进的深度学习方法和机器学习方面仍然存在各种尚未解决的问题,例如,弱的概括,遥不可及的性能,有限的数据集和数据筒仓。在本研究主题中,我们有一个为脑电图或医学图像使用多模式深度学习模型的示例,但是这些多模式作品的可行性依赖于原始数据集。此外,在脑电图或医学图像处理中研究了转移学习框架和对抗性学习的潜力。依靠其在大规模数据,机器学习和深度学习模型的强大拟合能力上,通常用于分析诸如脑电图和医学图像之类的生物医学信号,这些信号在p300-BCI,运动图像和医学图像处理中表现出了优势,但是在小型数据集中,它们在p300-BCI中的广泛性能力仍然有限。。他们发现多模式双级刺激研究工作致力于研究适当的机器学习和生物医学信号分析的深度学习解决方案,以及模型的解释性,因此至关重要。在本社论中,我们总结了使用鸡蛋或医学图像分析中深度学习的七个贡献文章中每一个中详细介绍的主要发现和观点。已经讨论了机器学习方法在解码卵信号中的优势,并提出了基于支持向量机的稀疏空间解码方法,由Hou等人提出。
摘要:本研究旨在探讨口呼吸引起缺氧(O 2 )所造成的脑功能变化,并提出通过额外供氧来减轻口呼吸对脑功能副作用的方法。为此,我们使用机器学习技术根据脑电图信号对呼吸模式进行分类,并提出了一种减少口呼吸对脑功能副作用的方法。本研究共有20名受试者参与,每个受试者在工作记忆任务中进行了三种不同的呼吸:口鼻呼吸和供氧口呼吸。结果表明,鼻呼吸能保证大脑正常的O 2 供应,而口呼吸会中断大脑的O 2 供应。因此,本项使用机器学习对脑电图信号进行的比较研究表明,区分口鼻呼吸对脑功能影响的最重要因素之一是O 2 供应的差异。这些发现对于工作环境具有重要意义,表明在公共交通等密闭空间中长时间工作的员工需要特别小心,并且工作场所需要充足的氧气供应以提高工作效率。
该内容已被UAB数字共享的授权管理员所接受,并作为免费开放访问项目提供。有关此项目或UAB数字共享的所有查询,都应将其针对UAB图书馆学术通信办公室。
摘要 心理压力如今已被视为一个重要问题。长期压力可能导致许多严重疾病,如心脏病发作、糖尿病、可能的猝死和精神障碍。传统的临床检测和监测压力的技术主要基于问卷调查和访谈。然而,由于它们的局限性和数据处理障碍,迫切需要更先进的技术。最近,许多研究集中于使用生理信号(如心脏活动、大脑活动、肌肉活动、语音和面部表情)对心理压力进行分类。从大脑活动收集数据的一种方法是使用一种名为脑电图 (EEG) 的非侵入式设备。本文简要介绍了 EEG,然后全面分析了伪影及其去除技术。讨论了 EEG 中的两种伪影及其去除方法,以及专家面临的挑战、优势和不同障碍。还讨论了用于心理压力分类的可能的机器学习 (ML) 和深度学习 (DL) 模型。此外,还讨论了提高压力检测准确性的可能方法的未来方向。© 2022 Little Lion Scientific。
脑电图是检测睡眠障碍的非常有效的工具。在文献调查中讨论了各种算法进步。信号采集,预处理,特征提取和分类是其实施的一般步骤。由于人工神经网络(ANN)非常适用于睡眠障碍的识别,因此无需明确的特征提取。ANN本质上能够理解数据中的基本模式。计算出的召回的值不过是在各自电极所做的读数的总体组合。随着数据的变化而变化。如今,通过选择最佳特征选择方法,该作品在优化电极数量方面正在进展。如今,通过选择最佳特征选择方法,该作品在优化电极数量方面正在进展。
脑部疾病是全球面临的重大健康挑战,一直是全球死亡的主要原因。脑电图 (EEG) 分析对于诊断脑部疾病至关重要,但对于医务人员来说,解读复杂的 EEG 信号并做出准确诊断却极具挑战性。为了解决这个问题,我们的研究重点是将复杂的 EEG 信号可视化为医疗专业人员和深度学习算法容易理解的格式。我们提出了一种称为前向后向傅里叶变换 (FBFT) 的新型时频 (TF) 变换,并利用卷积神经网络 (CNN) 从 TF 图像中提取有意义的特征并对脑部疾病进行分类。我们引入了肉眼裸眼分类的概念,将领域特定知识和临床专业知识整合到分类过程中。我们的研究证明了 FBFT 方法的有效性,使用基于 CNN 的分类在多种脑部疾病中实现了令人印象深刻的准确率。具体来说,我们使用基于 CNN 的分类方法对癫痫、阿尔茨海默病 (AD) 、杂音和精神压力的准确率分别达到了 99.82%、95.91%、85.1% 和 100%。此外,在肉眼分类方面,我们对癫痫、AD、杂音和精神压力的准确率分别达到了 78.6%、71.9%、82.7% 和 91.0%。此外,我们结合了基于平均相关系数 (mCC) 的通道选择方法来进一步提高分类的准确性。通过结合这些创新方法,我们的研究增强了 EEG 信号的可视化,为医疗专业人员提供了对 TF 医学图像的更深入了解。这项研究有可能弥合图像分类和视觉医学解释之间的差距,从而更好地检测疾病并改善神经科学领域的患者护理。
摘要 - ICU是一个专门的医院部门,可为高风险的患者提供重症监护。重新征收护理的巨大负担需要准确,及时的ICU结果预测,以减轻重症监护需求施加的经济和医疗保健负担。现有的研究面临着挑战,例如提取困难,准确性低和资源密集的功能。一些研究探索了利用原始临床输入的深度学习模型。但是,这些模型被认为是不可解剖的黑匣子,从而阻止了它们的广泛应用。该研究的目的是使用随机信号分析和机器学习技术开发一种新方法,以有效地从ICU患者的实时时间序列的生命体征的实时时间序列中提取具有强大预测能力的特征,以进行准确,及时的ICU结果预测。结果表明,提出的方法提取了有意义的特征和优于基线方法,包括Apache IV(AUC = 0.750),基于深度学习的模型(AUC = 0.732,0.712,0.698,0.722)和统计特征分类方法(AUC = 0.765)。所提出的方法具有临床,管理和行政影响,因为它使医疗保健专业人员能够及时,准确地确定与预后的偏差,因此可以进行适当的干预措施。
模块 — I(12 小时) MOS 场效应晶体管:FET 和 MOSFET 的原理和操作;P 沟道和 N 沟道 MOSFET;互补 MOS;E- MOSFET 和 DMOSFET 的 VI 特性;MOSFET 作为放大器和开关。BJT 的偏置:负载线(交流和直流);工作点;固定偏置和自偏置、带电压反馈的直流偏置;偏置稳定;示例。FET 和 MOSFET 的偏置:固定偏置配置和自偏置配置、分压器偏置和设计模块 — II(12 小时)BJT 的小信号分析:小信号等效电路模型;CE、CC、CB 放大器的小信号分析。Rs 和 RL 对 CE 放大器操作的影响、射极跟随器;级联放大器、达林顿连接和电流镜电路。 FET 的小信号分析:小信号等效电路模型、CS、CD、CG 放大器的小信号分析。CS 放大器上的 RsiG 和 RL 的匹配;源极跟随器和级联系统。模块 —III(8 小时)FET 和 BJT 的高频响应:BM 和 FET 的高频等效模型和频率响应;CS 放大器的频率响应、CE 放大器的频率响应。模块 —IV(6 小时)反馈放大器和振荡器:负反馈和正反馈的概念;四种基本反馈拓扑、实用反馈电路、正弦振荡器原理、WeinBridge、相移和晶体振荡器电路、功率放大器(A、B、AB、C 类)。模块 — V(7 小时)运算放大器:理想运算放大器、差分放大器、运算放大器参数、非反相配置、开环和闭环增益、微分器和积分器、仪表放大器。书籍:
本研究的目的是利用现场传感器数据检测基于焊丝的定向能量沉积 (W-DED) 过程中的缺陷形成。本研究研究的 W-DED 类似于金属惰性气体电弧焊。W-DED 在工业上的应用受到限制,因为该过程易受随机和环境干扰的影响,这些干扰会导致电弧不稳定,最终导致缺陷形成,如孔隙度和不理想的几何完整性。此外,由于 W-DED 部件尺寸较大,很难使用 X 射线计算机断层扫描等非破坏性技术在处理后检测缺陷。因此,本研究的目标是使用从安装在电弧附近的声学传感器获取的数据来检测 W-DED 部件中的缺陷形成。为了实现这一目标,我们开发并应用了一种新颖的小波集成图论方法。该方法从受噪声污染的声学传感器数据中提取一个称为图拉普拉斯菲德勒数的单一特征,随后在统计控制图中跟踪该特征。使用这种方法,可以检测到各种类型缺陷的发生,误报率低于 2%。这项工作展示了使用高级数据分析进行 W-DED 现场监测的潜力。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可证开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。