人体内脏的位置和形态沿左右轴不对称。在发育中的胚胎中的异常左 - 右图可能会导致一系列先天性的侧向缺陷,例如右心脏和异质综合征。横向缺陷是一种遗传状况。但是,仅在一名患者中发现致病性遗传病变。在这项研究中,对78例侧向缺陷的患者进行了全异位测序。我们在MMP21(C.G496T; P.G166 ∗)中确定了一种新型的Stopgain变体,中国患有镜像右您的中国患者。这种变体引起了仅包含信号肽和丙肽的截短的MMP21 mRNA,而基质金属蛋白酶-21的编码序列几乎完全不存在。据我们所知,这种新颖的变体是在右心脏病患者中鉴定出的第一个纯合子定格变体,也是在东亚发现的第一个MMP21变体。我们的发现扩展了MMP21变体的频谱,并为MMP21在汉族中国人口中的左图中的关键作用提供了支持。
n-脱绿素是位于蛋白质N末端的短序列,可介导E3连接酶(E3S)与底物的相互作用以促进其蛋白水解。可以很好地确定,可以在蛋白酶裂解后暴露于n-脱绿素,以允许E3识别。但是,我们关于蛋白质和E3如何在蛋白质质量控制机制中合作的知识仍然很少。使用系统的方法监测N末端组文库的蛋白质稳定性,我们发现第三n末端位置(以下简称“ P+3”)的脯氨酸残基会促进不稳定性。遗传扰动鉴定出二肽基肽酶DPP8和DPP9以及N-Degron途径的主要E3S,UBR蛋白,是P+3轴承底物的调节剂。有趣的是,P+3 UBR底物对分泌蛋白显着富集。我们发现,分泌蛋白依赖于信号肽(SP)的靶向蛋白包含其SP中的“内置” N-Degron。此Degron在易位失败到指定的隔室后被DPP8/9暴露,从而使UBR可以清除错误定位的蛋白质。
摘要:作为C型凝集素超家族成员的甘露糖受体是一种非典型的pat-tern识别受体,可以内化与病原体相关的配体并激活细胞内信号传导。在这里,甘露糖受体基因LVMR是从Paci -Paci -files flitopenaeus vannamei中鉴定出来的。LVMR编码了信号肽,纤维蛋白II型(FN II)结构域和两个具有特殊EPS和FND基序的碳水化合物识别域(CRD)。LVMR转录本主要在肝癌中检测到,并在病原体挑战后提出了时间依赖的反应。重组LVMR(RLVMR)可以以Ca 2+依赖性的方式与各种PAMP和凝集的微生物结合,具有强大结合D-甘露糖和N-乙酰糖的能力。LVMR的敲低增强了大多数NF-κB途径基因的表达,炎症和氧化还原基因,而对大多数吞噬作用基因的转录没有明显影响。此外,LVMR的敲低导致活性氧(ROS)含量(ROS)含量和诱导型一氧化氮合酶(INOS)活性在颤动性和溶血感染后的肝癌中的活性增加。所有这些结果表明,LVMR在细菌感染过程中可能会作为免疫识别和炎症的负调节剂作为PRR。
摘要:脑脊液(CSF)是发现神经系统疾病生物标志物的重要基质。然而,CSF中蛋白质浓度的高动态范围阻碍了不靶向的质谱法检测最少丰富的蛋白质生物标志物。因此,对大脑内部的分泌过程有更深入的了解是有益的。在这里,我们旨在探讨脑蛋白是否以及如何预测CSF的分泌。通过将策划的CSF蛋白质组和人蛋白质图集的脑升高蛋白质组相结合,将脑蛋白分类为CSF或非CSF分泌。机器学习模型接受了一系列基于序列的特征的培训,以区分CSF和非CSF组,并有效地预测蛋白质的大脑起源。分类模型如果使用高置信度CSF蛋白,则在曲线下达到0.89的面积。最重要的预测特征包括亚细胞定位,信号肽和跨膜区域。分类器良好地概括为较大的大脑检测到的蛋白质组,并能够正确预测通过亲和力蛋白质组学鉴定的新型CSF蛋白。除了阐明蛋白质分泌的潜在机制外,受过训练的分类模型还可以支持生物标志物候选者的选择。关键字:脑蛋白质组,脑脊液,流体生物标志物,机器学习,蛋白质分泌■简介
(RxLR) 基序,这是易位所必需的 [2,5]。RxLR 效应物递送到宿主细胞中的方式存在争议;关于 RxLR 基序与宿主质膜脂质结合和细胞自主摄取的说法受到了质疑 [4]。有证据表明 RxLR 基序是蛋白水解加工的位点,在分泌过程中被切割和去除 [5]。与卵菌效应物相比,真菌细胞质效应物缺乏与易位相关的明显氨基酸基序。然而,卵菌和真菌效应物中保守的结构折叠被认为有助于效应物递送 [4]。有趣的是,真菌病原体稻瘟病菌 [ 6 ] 和卵菌晚疫病菌 [ 7 ] 的细胞质效应物都是通过非常规蛋白分泌 (UPS) 途径从这些病原体中输出的,也就是说,尽管它们具有分泌信号肽,但它们的输出对抑制剂布雷菲德菌素 A 不敏感,因为抑制剂布雷菲德菌素 A 会阻断细胞内囊泡运动,从而阻止通过内质网 (ER) 和高尔基体的常规分泌。分泌途径可能是决定这些病原体向宿主输送的关键步骤。事实上,有证据表明,通过 UPS 途径从丝状病原体中输出细胞质效应物的情况非常普遍 [ 4 ]。除了了解细胞质效应物的分泌之外,一个关键问题是:它们如何进入植物细胞?
酿酒酵母是广泛使用的生物合成系统之一,用于生产各种生物产品,尤其是生物治疗药物和重组蛋白。由于外来基因的表达和插入总是受到酿酒酵母内源性因素和非生产性程序的阻碍,因此已经开发出各种技术来增强转录的强度和效率并促进基因编辑程序。因此,阻碍异源蛋白质分泌的限制已经得到克服。已经开发出负责转录起始和精确调控表达的高效启动子,这些启动子可以通过合成启动子和双启动子表达系统进行精确调控。适当的密码子优化和协调以适应酿酒酵母的基因组密码子丰度有望进一步提高转录和翻译效率。通过将专门设计的信号肽与上游外源基因融合,可以实现高效、准确的转运,从而促进新合成的蛋白质的分泌。除了广泛应用的启动子工程技术和明确的内质网分泌途径机制外,创新的基因组编辑技术 CRISPR/Cas(成簇的规律间隔的短回文重复序列/CRISPR 相关系统)及其衍生工具可以更精确、更有效地进行基因破坏、定点突变和外源基因插入。本综述重点介绍为精确调控酿酒酵母表达系统的代谢而开发的复杂工程技术和新兴遗传技术。
正确折叠的蛋白对于几乎所有细胞过程至关重要,包括酶催化,信号转导和结构支持。细胞已经发展出复杂的控制机制,例如伴侣和蛋白质抗体网络的帮助,以确保蛋白质正确地成熟并正确折叠并保持其功能构象。在这里,我们回顾了控制关键激素调节剂或葡萄糖稳态折叠的机制。胰腺β细胞中的胰岛素合成始于前胰岛素的产生。在翻译过程中,胰岛素前体涉及内质网(ER)易位机制的成分,这对于预胰岛素信号肽的适当定向,易位和裂解至关重要。这些步骤对于启动Proinsulin的正确折叠至关重要。Proinsulin的可折叠性在ER中进行了优化,该环境旨在支持折叠过程和拆卸债券的形成,同时最大程度地减少错误折叠。这种环境与ER应力反应途径无关,这对胰腺β细胞具有有益的和潜在的有害作用。促硫素的折叠折叠可能导致过多的生物合成载荷,促硫素基因突变或影响ER折叠环境的遗传易感性。错误折叠的促硫蛋白会导致有效的胰岛素产生,并导致糖尿病发病机理。了解蛋白质折叠的机制对于解决糖尿病和其他蛋白质错误折叠的疾病至关重要。
SPP 是一种 GXGD 型膜内裂解天冬氨酰蛋白酶,具有 9 个跨膜结构域,可裂解疏水脂质双层中的跨膜蛋白( 1 , 2 )。SPP 在整个进化过程中表现出高度的保守性,广泛存在于各种真核生物中,包括真菌、原生动物、植物和动物( 3 )。它具有广泛的生物学功能:通过消除前体信号肽酶 (SP) 裂解后在内质网 (ER) 中积累的信号肽来调节 ERAD 通路( 4 );与错误折叠的膜蛋白结合并形成参与体内自噬的大型寡聚复合物( 5 );通过水解信号肽来控制正常的免疫监视,促进表位片段的释放,保护细胞免受自然杀伤细胞 (NK) 的攻击 ( 6 );与病毒蛋白相互作用,影响病毒的加工和复制,或作为病毒逃避宿主免疫系统的手段 ( 4 , 7 – 9 )。敲低或抑制 SPP 会极大地影响生物体自身对病毒的抵抗力。SPP 介导的裂解负责将丙型肝炎病毒 (HCV) 核心蛋白引导到脂滴,这是病毒出芽和核衣壳组装的关键步骤。研究表明,使用抑制剂抑制 SPP 可以阻碍 HCV 增殖 ( 7 , 8 , 10 )。在感染过程中,单纯疱疹病毒 (HSV) 利用其糖蛋白 K (gK) 与 SPP 结合,促进 HSV-1 复制。SPP 诱导的敲除小鼠的病毒潜伏期显著缩短,使用 SPP 抑制剂后病毒复制也显著减少 ( 9 , 11 )。SPP 在猪瘟病毒 (CSFV) 核心蛋白的加工和成熟过程中起着重要作用,使用 (Z-LL) 2-酮抑制 SPP 可显著降低 CSFV 的活力 ( 12 )。这些实例凸显了 SPP 在病毒感染中的深远意义,表明针对宿主 SPP 可能是一种非常有效的抗病毒策略。家蚕(Bombyx mori)因其独特的吐丝特性而成为一种经济昆虫。然而,家蚕生产经常受到各种蚕业疾病的困扰。在这些疾病中,BmNPV 是最严重和最昂贵的病毒性疾病,导致严重的蚕业损失。考虑到 SPP 的特性,我们研究了编辑 BmSPP 是否可以提高家蚕对 BmNPV 的抵抗力。我们的预期是编辑 BmSPP 会产生抗性菌株。NPV 是一种存在于多种节肢动物中的杆状病毒,可感染 8 个目 600 多种昆虫,包括鳞翅目、膜翅目、双翅目、鞘翅目等(13)。它是一种具有双链环状 DNA 基因组的 DNA 病毒,因其基因组被包裹在杆状核衣壳中而得名(14)。BmNPV 在感染过程中产生两种类型的病毒颗粒:包涵体衍生病毒 (ODV) 和芽生病毒 (BV)。杆状病毒对宿主幼虫的感染是由 ODV 引起的,随后,BV 导致宿主的全身感染(15)。杆状病毒经口腔进入宿主,经前肠进入中肠,在中肠碱性环境中释放ODV。然后ODV直接与中肠细胞膜融合,释放核衣壳进入细胞质,导致原发性感染(14)。在宿主体内,病毒利用宿主自身的环境在宿主细胞内复制
在肠道中,上皮因子条件传入的免疫细胞,包括单核细胞,以适应其激活阈值并防止不需要的炎症。结肠上表达细胞表达分泌的白细胞蛋白酶抑制剂(SLPI),这是活化B细胞(NF-κB)的NF Kappa轻链增强子的抑制剂(NF-κB),可介导对微生物刺激。已经提出了单核细胞对细胞外SLPI的摄取来抑制单核细胞活化。我们质疑单核细胞是否可以产生SLPI以及内源性SLPI是否可以抑制单核细胞激活。我们证明了人类THP-1单核细胞产生SLPI,并且可以在人肠道层次中检测到CD68 + SLPI产生细胞。敲低人类THP-1细胞中SLPI显着增加了NF-κB激活,随后C-X-C基序趋化因子配体8(CXCL8)(CXCL8)和TNF-α产生,响应微生物刺激。与缺乏全长SLPI或SLPI缺乏信号肽的SLPI缺陷型细胞挽救了NF-κB激活和细胞因子产生的抑制作用,表明内源性SLPI抑制单核细胞细胞活化。出乎意料的是,尽管有效摄取,但外源SLPI并未抑制CXCL8或TNF-α产生。我们的数据表明,内源性SLPI可以调节单核细胞激活的阈值,从而防止粘膜组织中共生细菌激活。
在Pichia Pastoris中均拟定了Bjerkandera adusta菌株UAMH 8258 8258编码碳水化合物酯酶(指定为baces I)的新基因。该基因具有1410 bp的开放式阅读框,编码了470个氨基酸残基的多肽,前18个用作分泌信号肽。同源性和系统发育分析表明,Bacesi属于碳水化酯酶家族4。蛋白质和正常模式分析的三维模型揭示了可能与酯酶活性相关的活性位点的呼吸模式。此外,该酶的总体负静电电位表明它会降解中性底物,并且不会作用于诸如肽 - 甘氨酸或P-硝基苯酚衍生物等阴性底物上。酶在2-乙酸乙酸萘酯上显示出1.118 U mg 2 1蛋白的特异性活性。从静电势数据提出的P-亚硝基苯酚衍生物上未检测到活性。通过测量包括多种底物的乙酸释放,包括燕麦Xylan,虾壳壳蛋白,N-乙酰葡萄糖胺和天然底物,如甘蔗和糖甘蔗和草等天然底物,确认了重组Bacesi的脱乙酰化活性。这使得蛋白质对生物纤维生产行业的蛋白质非常有趣,从木质纤维素材料和壳蛋白产生壳聚糖。