介绍了在 InP 和 GaAs 上生长的带隙低于 0.60 eV 的倒置变质 Ga 0.3 In 0.7 As 光伏转换器。InP 和 GaAs 上的穿线位错密度分别为 1.3 ± 0.6 × 10 6 和 8.9 ± 1.7 × 10 6 cm − 2。在辐照下,器件分别产生 0.386 和 0.383 V 的开路电压,产生 ≈ 10 A cm − 2 的短路电流密度,产生 0.20 和 0.21 V 的带隙电压偏移。功率和宽带反射率测量用于估计热光伏 (TPV) 效率。估计 InP 基电池在 1100°C 时可产生 1.09 W cm − 2,而 GaAs 基电池可产生 0.92 W cm − 2,效率分别为 16.8% 和 9.2%。两种器件的效率都受到亚带隙吸收的限制,功率加权亚带隙反射率分别为 81% 和 58%,其中大部分假定发生在分级缓冲器中。如果先前证明的反射率已达到,则估计 1100°C TPV 效率在移除分级缓冲器的结构中将增加到 24.0% 和 20.7%。这些器件也适用于 2.0–2.3 μ m 大气窗口内的激光功率转换。在 2.0 μ m 辐照度 1.86 和 2.81 W cm −2 下,峰值激光功率转换效率分别估计为 36.8% 和 32.5%。
Sarawut Sirikasemsuk,1个Ponthep Vengsungnle,2 Smith Eiamsa-Ard 3和Paisarn Naphon 4,*摘要电池模块的热管理在其一生,性能,性能和安全风险中起着至关重要的作用。超载或外部热量会导致热失控。在高操作条件下,电池内部的电解质蒸发并产生较高的压力,导致电解质分解,泄漏,点燃和爆炸。使用湍流混合物,考虑了电池通过电池壳的流动的锯齿形流动的热行为。计算域包含十二个棱镜Lifepo 4电池电池,并具有四个冷却流夹克配置。从比较过程中达成了合理的协议。随着工作流体和较高浓度,TIO 2纳米流体和Fe 3 O 4的出口冷却剂温度高于水的高度,可提高去除热量能力。反向Zigzag引导流量降低了电池温度。电池模块的最高温度梯度分别为5.00 O C,4.60 O C,4.53 O C,3.41 O C和1.85 O C,分别为I,II(a),II(a),II(b),III和IV。因此,这种冷却系统可能是设计电池模块内部区域的冷却系统的替代方法,尤其是大型模块。
y 1.0输出功率因数(PF):提供更多可用的功率,使您能够连接更多的设备节省金钱和空间。y功率因数校正:防止噪声,谐波和失真转移到连接的载荷或送回实用程序中。y高级警告状态:接收早期的听觉和视觉警报,警告您系统状态,以提醒您输入电压,输出过载,电池低或更换电池。y宽输入电压范围:通过允许UPS在传输到电池之前最大程度地利用实用功率来延长电池寿命。y扩展运行时:VRLA(2U):最多5个字符串(或5对外部电池柜)可为最大的运行时提供最大的运行时,最多可达67分钟 @满载,而143分钟则为143分钟。锂:最多8个字符串(或8对1U外部电池柜)在满载时的最大运行时间为94分钟,在一半负载下为188分钟。y高效率:在正常(在线)操作模式下运行高达93%,在ECO模式下运行最多99%。y闪电和电涌保护:Liebert®ITA2内部的瞬态电压抑制电路为连接的设备提供了额外的保护。
仅供研究使用。不可用于诊断程序。Molecular Loop 和 Molecular Loop 徽标是 Molecular Loop Biosciences, Inc. 的商标。所有其他商标均为其各自所有者的财产。© 2022 Molecular Loop Biosciences, Inc. 保留所有权利。05/22 www.molecularloop.com
在B2B中,内容既超过销售表现和及时性作为客户的因素。但是,有57%的卖家表示,他们对营销团队生产的内容没有太多关注,认为这是通用和反应迟钝的。然而,通过将分析(从创新来源中获取的新型数据)结合在一起,与直接的客户对话和调查相结合,B2B营销团队可以个性化与特定帐户或行业中个人决策者和有影响力的人说话的内容。例如,首席信息官(CIO)和同一公司的数据科学家的销售方法可能会大不相同,同时仍在加强常见消息(图4)。
气体填充,激光驱动的“倒入电晕”融合靶标吸引了作为研究动力学物理学的低温中子源和平台的兴趣。在调查的填充压力下,从壳体中弹出的颗粒可以在碰撞之前深入渗透到气体中,从而导致在气体 - 壳界面上显着混合。在这里,我们使用动力学离子,流体 - 电子混合粒子中的模拟来探索该混合物的性质。模拟显示出弱碰撞静电冲击的特性,因此,强烈的电场将壳离子加速到罕见的气体中,并反映上游气体离子。这种互穿的过程是由碰撞过程介导的:在较高的初始气压下,较少的壳颗粒进入混合区域并到达热点。通过中子产量缩放与气压可检测到这种效果。中子屈服缩放的预测与在欧米茄激光器设施中记录的实验数据表现出极好的一致性,这表明一维动力学机制足以捕获混合过程。
