1 研究与创新中心,Fondazione Edmund Mach,Via E. Mach 1, 38098 San Michele all'Adige,意大利;carlotta.pirrello@unipd.it(CP);giulia.malacarne@fmach.it(GM);marco.moretto@fmach.it(MM);lenzi.luisa@gmail.com(LL);michele.perazzolli@fmach.it(MP);stefania.pilati@fmach.it(SP); claudio.moser@fmach.it (CM) 2 乌迪内大学农业、食品、环境与动物科学系,Via delle Scienze 206, 33100 Udine, 意大利 3 特伦托大学农业食品环境中心(C3A),Via E. Mach 1, 38098 San Michele all'Adige,意大利 4 SciENZA Biotechnologies BV,Sciencepark 904, 1098 XH Amsterdam,荷兰;T.Zeilmaker@enzazaden.nl 5 植物-微生物相互作用,乌得勒支大学生物学系,Padualaan 8, 3584 CH Utrecht,荷兰; g.vandenackerveken@uu.nl * 通讯地址:lisa.giacomelli@fmach.it † 现地址:意大利帕多瓦大学农学、食品、自然资源、动物和环境系,Agripolis 校区,V.le dell'Università 16,35020 Legnaro。‡ 这些作者对本研究的贡献相同。
甲型流感 (H1N1)pdm09 细胞培养衍生的 1 候选疫苗病毒或重组疫苗抗原,用于开发和生产用于 2022 年南半球流感季节的疫苗。世卫组织全球流感监测和应对系统 (GISRS) 的世卫组织合作中心 (CC) 已使用认证细胞系(如 MDCK 33016 PF a、NIID-MDCK b)分离人流感病毒。世卫组织 CC 还对细胞培养的候选疫苗病毒 (ccCVV) 进行抗原和基因分析。除非另有说明,这些 ccCVV 已通过针对符合世卫组织建议 2 的细胞培养繁殖原型病毒的双向血凝抑制 (HI) 或病毒中和 (VN) 测试。世卫组织 CC 尚未对这些 ccCVV 进行任何其他测试(包括外来因子)。国家或地区监管部门通常会批准每个国家使用的流感疫苗的生产、成分和配方 3 。制造商应咨询相关国家或地区监管部门,了解使用这些 ccCVV 进行流感疫苗生产的适用性。
利用我们基于网络的 CellMiner(https://discover.nci.nih.gov/cellminer/)和 CellMinerCDB(https://discover.nci.nih.gov/cellminercdb/)应用程序中的信息,我们确定了 3978 个与药理反应有显著关联的分子事件,这些基因要么是靶标,要么是生物标志物,要么与药物有因果关系。分子事件包括 DNA 拷贝数、甲基化和突变;和转录本;以及 NCI-60 人类癌细胞系的整体或磷酸化蛋白质表达。虽然所有形式的分子数据在某些(基因-药物)配对中都具有参考价值,但发现显著关联的分子事件类型因药物而异。发现某些形式的分子数据比其他形式具有更频繁的显著相关性。领先的是通过抗体测量的磷蛋白(31%),其次是通过微阵列测量的转录本(16%),以及通过质谱或抗体测量的总蛋白水平(14%)。所有其他测量值的范围在 5% 到 11% 之间。当使用具有相同靶标的不同药物以及对相同分子参数进行不同测量时,数据可靠性的结果一致。各种分子参数与药理反应之间的相关性显著性为与每种基因-药物配对具有生物学相关性的参数提供了功能指示,以及测量类型之间的比较。
抗肿瘤坏死因子 (TNF) 等生物制剂治疗克罗恩病 (CD) 安全有效,但患者中原发性和继发性无反应率很高。在本研究中,我们应用计算方法通过计算机模拟发现抗 TNF 难治性 CD 的新型药物疗法。我们使用来自 NCBI GEO 的抗 TNF 难治性 CD 患者的转录组数据集 (GSE100833)。共表达分析后,我们基于蛋白质-蛋白质相互作用数据库 STRING 专门研究了簇中基因间蛋白质-蛋白质相互作用的程度。使用基于 KEGG 基因集的 clEnrich 函数进行通路分析。簇 1、2、3、4 中的共表达基因、上调或下调基因以及所有差异表达基因都高度相关。其中,趋化因子信号传导高度富集的簇 1 也显示出细胞因子-细胞因子受体相互作用的富集,并确定了几种已知对 CD 有效的药物,包括环孢菌素。还确定了伏立诺他、组蛋白去乙酰化酶抑制剂和已知对 NF-κB 活性有抑制作用的荜茇酰胺。一些生物碱也被选为潜在的治疗药物。这些发现表明它们可能成为抗 TNF 难治性 CD 的新型治疗选择,并支持使用公共分子数据和计算方法来发现 CD 的新型治疗选择。
背景:气候变化威胁着东非的农村生计。证据表明,在这种情况下的气候变化适应可能会繁殖不平等的家庭性别关系,而当妇女以有意义的方式参与时,适应可能会更有效。因此,对家庭内部适应决策的性别性质的细微理解对于性别响应性研究,政策制定和实践至关重要。这项定性的系统审查旨在调查性别关系如何影响有关东非农村家庭气候变化适应的决策,以及关于气候变化适应的决策如何影响家庭内部性别动态。应用定性元合成原则,在8个数据库中进行了系统搜索,并补充了全面的手工搜索。使用预定的纳入标准筛选了3,662次独特的命中,导致最终样本的21篇论文。这些研究的相关发现是使用归纳主题编码,记忆和主题分析合成的。男性倾向于成为主要决策者,但妇女在传统的女性领域和女性家庭中行使了一些决策权。妇女和男性在家庭内适应决策中的作用似乎受到了许多相互互补的因素的影响,包括性别规范,劳动力的性别划分以及访问权限,所有权和对资源的所有权和控制。家庭内部适应似乎会影响男性和女性家庭成员之间的动态。这种影响的途径是综合性的,男女的最终结果尚不清楚。我们讨论了我们的发现,涉及有关发展和适应性性别转化方法的理论文献,以及有关东非临床变化适应性的性别性质的先前研究。然后,我们讨论对性别响应适应干预措施的影响。
高地棉花(Gossypium hirsutum L.)占全球棉花生产的90%以上,为全球纺织品和油料种子工业提供了天然材料。提高高地棉花产量的一种策略是增加了杂种的采用。然而,棉花的灭绝是非常耗时的,棉花雄性不育的遗传来源受到限制。在这里,我们回顾了已知的植物核男性不育(NMS)的生物化学模式,通常称为植物遗传性不育(GMS),并将其表征为四组:转录调控,剪接,脂肪酸的运输和加工以及糖的运输和加工和加工。我们已经探索了30个单子叶植物(玉米,大米和小麦)和三个双子(拟南芥,大豆和番茄)的30 gms基因的蛋白序列同源性。我们已经分析了单子植物和双子DICOT GMS基因之间的进化关系,以描述这些基因鉴定的相对相似性和相关性。五个是较低的源物种,四种是单子叶植物独有的,五核,在所有物种中有14个高度保守,而另外则有两个。使用此源,我们已经在高地棉质基因组中鉴定了23个潜在的候选基因,用于开发用于杂交棉花育种的新雄性无菌种质。将基于同源性的研究与基因组编辑结合使用可以允许发现和验证GMS基因,这些GMS基因以前在棉花中未观察到多样性,并且可能允许在杂化棉产生中使用理想的雄性无菌突变体。
脚注 1. PhRMA。(2022 年)。2021 年概况:生物制药研究行业。 2. JAMA。(2020 年 3 月 3 日)。2009 年至 2018 年将新药推向市场所需的研发投资估计。 3. NIH。(2019 年 6 月)。药物开发和自适应试验设计的 II 期试验。 4. PhRMA。(2023 年)。2022 年 PhRMA 年度会员调查。 5. Evaluate Pharma。(nd)。竞争对手分析仪 | 按适应症划分的销售额。访问于 2024 年 4 月 2 日。 6. 食品药品监督管理局。(nd)。新分子实体 (NME) 药物和新生物制剂批准。访问于 2024 年 1 月 1 日。 7. Drugs.com。(2022 年 8 月 25 日)。Humira FDA 批准历史。 8. Evaluate Pharma.(nd)。Evaluate Omnium:风险与回报概述。访问日期:2024 年 4 月 2 日。9. Evaluate Pharma.(nd)。孤儿药:概述。访问日期:2024 年 4 月 2 日。10. 同上。11. Evaluate Pharma.(nd)。传统:技术概述。访问日期:2024 年 4 月 2 日 12. Evaluate Pharma.(nd)。生物技术:技术概述。访问日期:2024 年 4 月 2 日 13. Evaluate Pharma.(nd)。细胞疗法:技术概述。访问日期:2024 年 4 月 2 日
写一份声明,描述您对学生在学术上成功的技术富裕学习环境的愿景。在撰写个人愿景陈述时,请考虑以下问题:•通过教练使自己的愿景成为现实,您将采取什么行动?•您将如何对这一愿景负责?•您将如何确保您的工作是公平的并满足学习者的需求?•您将如何整合技术以支持您
Ikkoh Yasuda,Naomi Ruth D. Saludar,Ana Ria Sayo,Shuichi Suzuki,Akira Yokoyama,Yuriko Ozeki,Ikkoh Yasuda,Naomi Ruth D. Saludar,Ana Ria Sayo,Shuichi Suzuki,Akira Yokoyama,Yuriko Ozeki,
普拉克明县的综合项目,涵盖密西西比河两岸的特色。在约 28,000 英亩的土地上创造沼泽,包括填充深度超过 2.5 英尺的区域,并创造新的湿地栖息地,恢复退化的沼泽并减少波浪侵蚀。恢复巴拉塔里亚盆地的大河口山脊和大河口利亚德山脊。七个 2000 立方英尺/秒容量的泵虹吸管从 MR 输送到邻近湿地和威尼斯、布斯维尔、帝国、热带弯道、鹿岭运河、菲尼克斯和杜邦河湾的河道清理区(12 月 1 日至 4 月 30 日运营。当密西西比河流量等于 750,000 立方英尺/秒时,每个泵虹吸管的流量为 2,000 立方英尺/秒;对于 300,000 立方英尺/秒和 750,000 立方英尺/秒之间的河流流量,使用从 0 到 2,000 立方英尺/秒的线性函数计算可变流量;对于 750,000 立方英尺/秒以上的河流流量,流量恒定为 2,000 立方英尺/秒。低于 300,000 立方英尺/秒时不运行)