量化投资:过去和现在 我们今天所理解的量化投资理论和实践始于 20 世纪 50 年代。引领这一潮流的是一些著名的学术模型,如马科维茨的现代投资组合理论(1952 年)、夏普的资本资产定价模型(1964 年)和法玛的有效市场假说(1970 年)——当然还有法玛与弗伦奇合作提出的开创性的三因素模型(1992 年)。今天,量化投资在相关性和复杂程度方面不断发展。LSV、BGI/BlackRock、AQR 等从业者以及我们自己的 Robeco 研究人员都为该领域做出了贡献,量化管理的 AuM 在此过程中稳步增长。量化投资最初被视为一种学术上的好奇心,在 20 世纪 90 年代开始发展,如今已被视为与基本面相同的市场不可或缺的一部分。我们相信,新技术的发展将继续成为量化投资发展最深刻、最关键的影响因素之一。未来 20 年,这种发展(最近在数据和计算领域)的速度看起来将与过去 20 年一样快,甚至更快。如果我们加上
假设塑造了我们的现实,内维尔·戈达德(Neville Goddard)的假设定律揭示了这在我们生活中的表现。根据戈达德(Goddard)的说法,假设是我们现实的基础,将所有思想和行动指向他们的实现。我们的大脑通过神经可塑性处理这些假设,不断调整神经途径以增强或改变它们。当我们做出一致的正面或负面假设时,大脑会重新布线与这些假设保持一致。量子连接表明,假设在量子层面上运作,不仅影响了我们的个人经验,还影响了外部世界对我们的反应方式。通过假设所需的状态并唤起强烈的积极情绪,我们提高了假设的效力,巩固了信念和向潜意识的思维发出信号。塑造我们现实的力量在于理解假设定律。为了利用这种权力,我们必须首先认识到假设在我们的生活中所扮演的角色。首先要意识到自己的思想,确定影响您经历的模式和信念。然后,选择与您所需的现实保持一致的授权假设。感觉到了假定的现实,就好像已经是真的,使您的情绪能够推动潜意识的深刻变化。
Wush Wu [ctb](),Qiang Kou [ctb]() https://orcid.org/0000-0001-8804-4216>),米歇尔·兰[CTB]() https://orcid.org/0000-0003-4198-9911>),Radford Neal [ctb](),KENDON BELL [CTB] Matthew de Queljoe [CTB],Dmitry Selivanov [CTB],Ion Suruceanu [CTB],Bill Denney [CTB],Dirk Schumacher [CTB],AndrásSvraka[CTB],Sergey Fedorov [CTB] https://orcid.org/0000-0003-1878-3253>),Floris Vanderhaeghe [CTB](),Kevin Tappe [CTB] PEIKERT [CTB](),Mark van der loo [ctb]() https://orcid.org/0000-0003-2555-3878>),Moritz Beller [CTB](),塞巴斯蒂安·坎贝尔(Sebastian Campbell) https://orcid.org/0000-0002-1576-2126>),Dean Attali [CTB](),Michael Chirico Kevin Ushey [CTB]
使用能力扩展建模,探索了假设的新资源建设的系统性能,这些新资源可以帮助实现新英格兰当前的碳排放政策目标。
2030 年预计将是推出 6G(第六代)电信技术的一年。预计这一年还将推出功能强大到足以破解当前加密算法的量子计算机。加密技术仍然是保护互联网和 6G 网络的支柱。后量子密码 (PQC) 算法目前正在由 NIST(美国国家标准与技术研究所)和其他监管机构开发和标准化。PQC 部署将使 6G 的极低延迟和低成本目标几乎无法实现,因为大多数 PQC 算法依赖的密钥比传统 RSA(Rivest、Shamir 和 Adleman)算法中的密钥大得多。大型 PQC 密钥会消耗更多的存储空间和处理能力,从而增加其实施的延迟和成本。因此,PQC 部署可能会损害 6G 网络的延迟和定价目标。此外,NIST 评估的所有 PQC 候选者迄今为止均未通过评估,这严重危及了它们的标准化,并使 6G 的安全在 Q-Day 威胁面前陷入了两难境地。本报告提出了一个研究问题,并建立和支持了一个研究假设,以探索一种替代的绝对零信任 (AZT) 安全策略来保护 6G 网络。AZT 是自主的、快速的且成本低廉的。
“ what-if”计划用于可视化对各种教育目标的学位和要求的路径。可以为每个学生提供无限的保存计划,使“何种”计划为设想不同的专业,额外的专业,未成年人和证书如何影响学生的学位时间如何。
对于可再生资源(例如陆地风能、公用事业光伏、海上风能)和电池存储资源,资源的固定容量贡献基于边际 ELCC 曲线。边际 ELCC 曲线是针对 NYCA 中的每种适用技术类型和每个地区计算的。可再生资源的边际 ELCC 曲线是根据新资源在峰值净负载小时数的前 1%(P99)期间的平均产出(即最高净负载小时数期间的边际贡献)计算的。电池存储资源的边际 ELCC 曲线是根据新资源在最高峰值净负载小时数期间的峰值需求减少量计算的。针对每种技术类型的边际 ELCC 曲线计算中考虑的变量包括每小时负载、资源贡献(分别为可再生能源和电池存储资源的平均产出或峰值需求减少量)和评估资源的每小时负载净值。边际 ELCC 曲线是针对每种情景、NYCA 中的每种适用技术类型以及夏季和冬季的每个地区计算的。 DEFR 的固定容量额定值与 NERC GADS 数据库中联合循环装置的默认降额因子值一致。
在我们的路径中,我们假设 FES 中未建模的行业排放与气候变化委员会 (CCC) 的第六碳预算平衡路径保持一致。这意味着这些行业的排放将遵循 CCC 报告中概述的假设和结果。我们不直接建模的行业包括航空、农业、航运、土地利用、土地利用变化和林业 (LULUCF)、废物、含氟气体、生物燃料的生物能源碳捕获和储存 (BECCS) 和燃料供应。
基础发电机定义为当前正在运行并与 NYCA 互连或通过满足基础案例纳入规则而纳入的发电机。中标发电机定义为已中标合同且对基础案例有增量的发电机。候选发电机定义为模型假设为现有机组和合同发电机增量发电扩展候选者的发电机。上述发电机类别具有不同的特征和建模假设,这些标签在整个报告和附录中用于区分此假设矩阵中概述的特征。2024 年 4 月 4 日,LFTF/ESPWG 向 NYISO 利益相关者展示了基础和合同案例中中标发电机的列表。
生物过程工程的最新修订版本是第三版的,作为一本有关生化和生物处理工程的全面入门教科书。此更新的版本反映了该领域内生产力,创新和安全性的重大进步。作者提供了基本生物化学原理的概述,包括酶,细胞功能,微生物学和分子生物学。然后,他们深入研究了新兴的生物工具,旨在增强细胞操作并降低与生物处理相关的成本。第三版重点介绍了生物生产中的显着突破,创建异源蛋白质的有效技术以及动物和植物细胞培养物的创新应用。It also covers improvements in recombinant DNA microbe engineering, authentic protein processing, and other advanced topics such as: - The role of small RNAs in regulation - Transcription, translation, and cellular differences between prokaryotes and eukaryotes - Cell-free processes and metabolic engineering - Synthetic biology and the impact of genomics and epigenomics on bioprocesses - Advances in用于扩大/缩小/缩小和一次性技术的微反应器 - 干细胞的使用,微结构,纳米生物技术和3D打印技术的使用,文本由广泛的插图,示例和问题以及参考文献以及用于进一步阅读的参考支持。详细的附录提供了传统生物程序的概述。要访问更新,更正和下载,请在Informit.com/register上注册您的产品。蛋白质,小RNA和其他高级主题在此综合文本中探讨了。14。它探讨了原核生物和真核生物之间的转录,翻译,调节以及差异的作用,以及无细胞的过程,代谢工程和蛋白质工程。本书还涵盖了生物燃料和能量,包括协调的酶系统,混合抑制动力学和两相酶反应。合成生物学,基因组学,表观基因组学,人群平衡和批次生长和产物形成的gompetz方程。微反应器探索了疫苗生产,生物过程中的一次性技术,干细胞技术,微型制造,纳米元素技术和3D打印技术的微型反应器。还涵盖了动物和植物细胞生物技术以及传统生物处理的进步。7.5-7.12:酶抑制作用,高阶有理动力学,pH效应,温度效应,不溶性底物,固定酶系统,生物过程分析,大规模酶的生产,医学和工业酶利用,动力学近似 - 动力学近似-Michaelis-Michaelis-Mentimation-Michaelis-Menterenenten Equaration。8.1-8.12:固体表面上的化学反应,催化,吸附动力学,非理想表面的理想化,合作吸附,吸附,Langmuir-Hinshelwood-wong(LHHW)动力学,表面反应,速率控制步骤,表面活性 - 表面活性 - 抗速度 - 抗速度 - 抗速度 - 持续性 - 持续性 - 抗速度 - 持续性。9.1-9.12:细胞代谢,中央教条,DNA复制,转录,翻译,代谢调节,细胞感知其环境,主要代谢途径,生物合成,厌氧代谢,自养生代谢,自养代谢,monod方程。基因工程的应用和原理10.1-10.12:互动酶/蛋白质,多功能,共价寡聚,非共价关联,结构域交换组装,酶多晶型酶,配体酶相互作用,顺序配体配体结合,随机ACCESS结合,随机 - ACCESS配体结合。11.1-11.10:对多功能酶的分子调节,单底物反应,单分子反应,双分子反应,酶低聚物的混合物和经典模型,催化速率的理性表达,多种不同的配体活性中心,具有竞争力的竞争力,竞争力的核核,基因脉络性。12.1-12.13:细胞的生长,量化生物质,批处理生长模式,生物量产量,近似生长动力学,细胞死亡率,维持细胞代谢和内源代谢,产物产量,氧气需求,环境条件的效果,通过微生物生长的热量生长,细胞生长动力学模型的概述。13.1-13.10:细胞培养,批处理培养,连续培养,选择培养方法,带回收的化学静态,多阶段化学稳定系统,废水处理过程,固定的细胞系统,固体底物发酵,喂养批处理操作。14.1-14.4:进化和基因工程,突变,选择,基因转移和重排的自然机制,基因工程技术。
