这项关于 JT9D、CF6 和 PT6 飞机发动机可靠性的研究是对 JT8D 发动机研究的后续研究,该研究发表在联邦航空管理局 (FAA) 技术中心最终报告 DOT/FAA/CT-91/10 中。与 JT8D 发动机研究一样,这项研究对 JT9D、CF6 和 PT6 涡轮飞机发动机在 1988 年 2 月至 1991 年 1 月的 36 个月期间的飞行中停机和计划外拆卸率进行了趋势分析。与上一份报告一样,该方法是每月审查哪些航空公司在飞行中停机和计划外发动机拆卸方面持续超过标准偏差规范,然后检查这些航空公司报告的发动机部件故障。发动机部件故障分为以下几类:轴承、翼型、机壳、控制装置和附件、燃油/油系统和其他(未显示趋势)。对于 JT9D、CF6 和 PT6 发动机的这项研究,控制装置和附件通常会导致最多的飞行中熄火、压缩机失速和发动机停机。除了对 JT9D、CF6 和 PT6 发动机进行的精算分析和部件故障模式趋势分析外,还对 JT9D 和 CF6 发动机机壳应用了为 JT8D 发动机开发的检查程序。
这项关于 JT9D、CF6 和 PT6 飞机发动机可靠性的研究是对 JT8D 发动机研究的后续研究,该研究发表在联邦航空管理局 (FAA) 技术中心最终报告 DOT/FAA/CT-91/10 中。与 JT8D 发动机研究一样,这项研究对 JT9D、CF6 和 PT6 涡轮飞机发动机在 1988 年 2 月至 1991 年 1 月的 36 个月期间的飞行中停机和计划外拆卸率进行了趋势分析。与上一份报告一样,该方法是每月审查哪些航空公司在飞行中停机和计划外发动机拆卸方面持续超过标准偏差规范,然后检查这些航空公司报告的发动机部件故障。发动机部件故障分为以下几类:轴承、翼型、机壳、控制装置和附件、燃油/油系统和其他(未显示趋势)。对于 JT9D、CF6 和 PT6 发动机的这项研究,控制装置和附件通常会导致最多的飞行中熄火、压缩机失速和发动机停机。除了对 JT9D、CF6 和 PT6 发动机进行的精算分析和部件故障模式趋势分析外,还对 JT9D 和 CF6 发动机机壳应用了为 JT8D 发动机开发的检查程序。
可靠性和轨道稳定性。FY-92 期间 VUV 和 X 射线环的非计划停机时间分别为 3.1% 和 3.7%。工作人员已齐心协力确定并解决主要的停机原因。从旧计算机系统到新计算机系统的过渡进展顺利,应在 FY-93 年底前完成。工作人员值得称赞的是,他们能够在保持操作的同时更换整个控制系统,从而使转换对用户社区透明。X 射线环非计划停机的第二大原因是 RF 系统。为了解决这个问题,在 1992 年 12 月停机期间安装了第四个 RF 腔。有了四个腔,每个腔的平均负载就会减少,从而更可靠地运行。此外,如果一个腔掉落,那么其他三个腔会提供足够的功率,使光束不会倾泻。注入系统也正在进行重大升级。线性能量增加到 120MeV,现在以新能量定期运行。正在为助推器安装新的偶极子、四极子和六极子电源。用户应该能明显看到注入时间和系统可靠性的改善。填充期间的轨道稳定性由全局谐波反馈系统提供,垂直方向优于 20 微米,水平方向优于 40 微米。NSLS 工作人员
为了有效地设定数据中心可用性要求,机构必须首先了解其信息和信息系统的可用性需求。针对所有数据中心的单一可用性要求并不符合它们所处的现实运营环境。相反,机构的不同任务对其信息和信息系统的可用性有着不同的需求。为了了解这一需求,机构必须使用作为机构应急计划流程的一部分执行的业务影响分析的结果和相关的客户体验目标来确定数据中心托管的每个信息集和信息系统的最大可容忍停机持续时间和频率。业务影响分析可确定信息系统停机对机构任务的影响。10 利用该分析的结果,机构必须为每个数据中心设定最低可用性要求,以满足其托管的信息和信息系统的可用性需求。
驾驶 MQ-1C 灰鹰的机组人员在停机坪上对飞机进行发动机运转和电池检查后,进行了左差速转弯。收到滑行指令后,控制操作员在停机坪上执行了左差速转弯,而不是沿着机场滑行道中心线飞行。飞机指挥官指示有效载荷操作员寻找滑行道中心线,但滑行道边缘标记被错误识别为中心线。负责机组准备和起飞的机组长分心,未能及时向机组人员发出错误或直接障碍物的警报。由于使用滑行道边缘标记作为中心线,飞机在滑行道上的位置非常靠右,导致右翼接触到灯杆,导致飞机受损。
会议参与者可从三个方面受益:专业发展和提升;提高对其职能重要性的认识;接触新想法、新联系人和新资源。首次参会者经常发现,许多公司在追求更高可用性水平的过程中面临着类似(甚至完全相同)的技术和组织问题。那些仍未意识到这一点的人经常将自己的情况视为独特情况。但是,他们了解到存在许多常见的停机风险和故障模式,而解决方案则围绕着普遍的想法和态度。7x24 Exchange 会议提供了有关其他人为减轻或消除停机风险而计划和采取的措施的见解。然后可以根据实际优点和在其他地方取得成功的业务论据背景来证明建议的变更是合理的。
数据中心需要持续的功率来支持服务器,冷却系统和其他站点基础架构的连续可用性。如果备份发生器未启动,则公用事业停电可能会产生重大后果,例如停机,系统损坏和操作效率低下。
使用 SDT 200 及其传感器,以简单的方式保持机器健康并降低能源成本。查找漏气处、监控和监听轴承、安全检查配电板并在您方便的时候安排维修,在它们导致您停机之前 - 所有这些都使用超声波技术。
组合控制软件和阀门硬件系统,使清洗能够在停机前进行,然后用阀门系统隔离燃油歧管,这样在启动时就可以跳过清洗,从而节省 15 分钟以上。联合循环启动时间节省(符合 NFPA-85 标准)。
Atos 设备即服务只是我们在循环经济中实现零浪费 IT 战略的一部分。它提供更强大的资产管理,可最大限度地减少不必要的购买并提高利用率。组织受益于更低的碳足迹,以及设备停机时间的减少和生产力的提高。