应用超导性的创新研究基础设施(IRIS)是一项由意大利大学和研究部长资助的项目,领导层分配给INFN和LASA实验室作为其协调员。该项目目前处于最后阶段,涉及加速器(ESMA)的能源节能,完全高温超导偶极磁铁的设计和构建。该磁铁是由ASG超导体S.P.A.设计的,在INFN LASA团队的支持下。制造将在ASG超导体S.P.A. Genova中进行。此贡献涵盖了偶极子的最终设计及其构建技术,涵盖了电磁,机械和热方面。磁性明智的,使用金属与绝缘绕组技术缠绕12个赛道线圈。整体线圈堆栈(6+6)的长度将近1米,并具有70毫米宽的免费孔,最大中央磁场为10吨。为了缠绕线圈,已经设计和购买了专用的绕组机。可以承受这样的场,即由高强度合金制成的机械结构正在产生。ESMA将是一种传导冷却的无低温磁铁,并将在20 K下运行,从而大大降低了与低温药物相关的成本。
囚禁原子离子系统已证明,其状态准备和测量 (SPAM) 不准确性 [1] 以及单量子比特和双量子比特门错误率 [2–4] 是所有量子比特中最低的。基于囚禁离子的完全可编程、少量子比特量子计算机已经建成 [5, 6]。然而,到目前为止,这些系统尚未扩展到大量量子比特,原因包括异常加热 [7–10]、声子模式拥挤 [11]、光子散射 [12, 13],以及传统光学元件的扩展挑战 [14, 15]。最近,有研究表明,通过直接电磁偶极-偶极相互作用耦合的分子离子量子比特可用于量子信息处理 [16]。虽然使用该方法的分子量子比特系统的可扩展性预计不会受到异常加热或声子模式拥挤的限制,但目前分子离子量子比特并不像原子离子量子比特那样容易控制。特别是,分子离子的 SPAM 由于其通常缺乏光学循环跃迁而变得困难,这使得激光照射分子成为问题 [17]。一种方法是通过共捕获的原子离子进行量子逻辑光谱 (QLS) [18–20],这种方法最近也被用于纠缠原子和分子离子 [21]。然而,由于 QLS 需要在运动基态附近冷却,因此技术要求很高,而且激光操控分子离子会导致自发辐射到暗态。这里,我们描述了如何利用离子阱中的偶极-声子耦合将极性分子离子的偶极矩与多离子库仑晶体的声子模式纠缠在一起。这种现象可以用两种方式直观地理解:作为非静止离子所经历的时间相关电场驱动分子电偶极跃迁,或作为时间相关偶极矩驱动离子运动。对于多个离子,振荡发生在库仑晶体的集体模式中,甚至可以使相距很远的偶极子通过共享声子模式发生强烈相互作用。此外,偶极-声子相互作用可以是
在UTA教职员工和雷神导师的建议下,UT-Arlington CSE团队的成员提供了一个巨大的机会,可以体验现实世界中的发展条件和程序。由于各种各样的必要技术,团队面前的任务涉及陡峭的学习曲线,其中许多是团队成员的新手。最初随着团队驾驶无人汽车开发景观,持续测试,开发和部署的发展,尽管进展缓慢,但事实证明是一种成功的做法,并有助于确保生产满足竞争对手要求的车辆。通过协作,跨学科团队的工作经验丰富了每个参与者,并允许每个成员在软件,硬件和一般最佳实践中扩展其工程技能。我们要感谢雷神公司和乌特 - 阿灵顿允许我们参加这个非凡的机会。
摘要 中心自旋模型(其中单个自旋粒子与自旋环境相互作用)在量子信息技术中得到广泛应用,并且可用于模拟无序环境中量子比特的退相干等。我们提出了一种实现中心自旋模型超冷量子模拟器的方法。所提出的系统由单个里德堡原子(中心自旋)和极性分子(环境自旋)组成,它们通过偶极-偶极相互作用耦合。通过将内部粒子状态映射到自旋状态,可以模拟自旋交换相互作用。可以通过直接操纵环境自旋的位置来精确控制模型。作为示例,我们考虑环境自旋的环形排列,并展示系统的时间演化如何受到环的倾斜角的影响。
二维(2D)材料,例如,由自组装的分子单层或通过单层范围材料的单层形成,可以与光子纳米腔有效地融合,并有可能达到强耦合方案。耦合可以使用经典的谐波振荡器模型或空腔量子电动力学哈密顿量,这些模型通常忽略单层内的直接偶极 - 偶极相互作用。在这里,我们对系统的全哈密顿量进行对角,包括这些直接的偶极偶极相互作用。对典型2D系统的光学特性的主要影响只是将单层的明亮集体激发的有效能量重新归一致,并将其与纳米光子模式相结合。另一方面,我们表明,对于极端场合的情况,大型过渡偶极矩和低损失,完全包括直接偶极 - 偶极相互作用,对于正确捕获光学响应至关重要,许多集体状态都参与其中。为了量化此结果,我们提出了一个简单的方程式,该方程式指示直接相互作用强烈修改光学响应的条件。
摘要:偶极耦合很少被用作镧系元素单分子磁体中缓慢弛豫动力学的驱动力,尽管它通常是介导此类物质中离子间磁相互作用的最强机制。事实上,对于多核镧系元素复合物,由于它们能够形成高度定向、高矩基态,偶极相互作用的幅度和各向异性可能相当大。本文我们提出了单核、双核和三核铒基单分子磁体序列 ([Er −TiPS 2 COT] + ) 𝑛 (𝑛= 1 −3),其中磁弛豫路径允许性的大幅降低在角动量量子之间的偶极-偶极相互作用框架内得到合理化。由此产生的多核分子磁性设计原理源于高度各向异性磁态之间的分子内偶极耦合相互作用,为单个量化跃迁的复杂流形中的弛豫动力学提供了细致入微的证明。通过将弛豫动力学与分子磁性前所未有的频率范围(10 3 −10 −5 Hz)的交流磁场相结合,为该模型的有效性提供了实验证据。缓慢的动力学和多个低能跃迁的结合导致了许多值得注意的现象,包括在单一温度下可观察到三个明确定义的弛豫过程的镧系单分子磁体。
作者:G Schirò · 2020 · 被引用 4 次 — 中子通过强核力与原子核相互作用,通过偶极-偶极耦合与磁矩相互作用。... 强核力并给出 ...
对于所有 OEM 的设备,JEUMONT Electric 为其功率范围及以上的中高压发电机提供广泛的服务,最高可达 1600MVA。该公司可以在 Jeumont 工厂或全球现场调动 60 多名经验丰富的工程师和技术人员(研发、设计、装配、绕线、调试)。他们的设计和干预能力以及制造和测试手段使他们能够涵盖专门针对此类机器的全方位服务:• 测试和评估 • 纠正或程序化维护 • 维修、改造、更换、逆向工程。• 机器和网络工程(稳定性、瞬态、保护、