1. 需求与相关性 储能技术可以几乎同时吸收能量并储存电能一段时间,然后再释放以提供能源或电力服务,从而弥合能源供需之间的时间和(与其他能源基础设施组件结合时)地理差距。储能技术可以在整个能源系统中以分布式和集中式的方式大规模和小规模实施。麦肯锡 1 在 2013 年 5 月将固定式储能技术称为到 2025 年将改变生活、商业和全球经济的 12 个有前途的发展之一。如今的储能电池行业相当于 2010 年的太阳能光伏行业 2 。储能电池(以下称为 ES)在现代电力基础设施中发挥着四个主要作用。首先,ES 通过将非高峰时段获得的电力储存起来以供高峰时段使用,而不是以当时更高的价格购买电力,从而降低电力成本。其次,为了提高电力供应的可靠性,ES 系统在电网发生故障或不平衡时提供支持。其第三大作用是维持和改善电能质量、频率和电压。第四大作用是快速发展的新兴市场,旨在解决电力管理问题,例如过度的电力波动和/或不可靠的电力供应,这些问题与使用大量可变可再生能源 (VRE) 和/或不可预测的需求有关。ES 的电能质量应用(电网辅助服务,如频率支持、上升/下降等)要求以秒和分钟为单位,而 ES 的负载和可再生能源发电时移和 T&D 电网支持应用则要求以分钟和小时为单位放电。大容量电力管理应用需要在数小时内放电或在数天内对负载/发电进行时移,迄今为止,水力和抽水蓄能选项是最佳选择。ES 是有效管理 VRE 发电的高电网渗透率的重要元素,因此,它可以满足气候变化目标,因为它是一种关键的系统集成技术,可以完美管理能源供需,并提高发电、输电和负载之间的系统灵活性。因此,ES 应用程序由其操作模式、在电网中的位置以及它们旨在解决的问题来定义;而效益则由某个应用程序提供的价值来定义,如下图 1 所示。
技术描述 在含水层热能存储 (ATES) 中,多余的热量被储存在地下含水层中,以便在后期回收热量。热能被储存为温暖的地下水。地下水还用作将热量传输到地下和从地下传输热量的载体。因此,热能通过从含水层通过井生产和注入地下水来储存和回收。ATES 系统的容量范围从 0.33 MW 到 20 MW(Fleuchaus 等人,2018 年)。通常,ATES 按季节运行。夏季,来自燃气或燃煤发电厂、太阳能发电厂或热电联产厂的多余热量通过热交换器转移到冷地下水中。由此产生的温暖地下水将热量输送到含水层,热量在那里储存起来。在冬季,ATES 通过逆转生产井和注入井中的流量以相反的方向运行。现在,通过热交换器从温暖的地下水中回收储存的热量并用于供暖,而将产生的冷地下水重新注入含水层。通常,注入井和生产井之间的距离在 1000 米到 2000 米之间(Stober 和 Bucher 2014)。含水层的深度也各不相同。例如,在柏林,ATES 的深度在浅层含水层中为 30 米到 60 米之间,而在诺伊鲁平,深度约为 1700 米。在荷兰,大多数 ATES 系统使用地下深度在 20 米到 150 米之间的含水层(Bloemendal 和 Hartog 2018)。与深度相对应,热存储以不同的温度运行。低温 (LT) ATES 的运行温度低于 30°C,通常位于浅层含水层;中温 (MT) ATES 指的是 30°C 至 50°C 之间的温度范围;高温 (HT) ATES 的运行温度为 50°C 及以上(Lee 2013)。与 MT 和 HT-ATES 相比,由于 LT-ATES 中的温度较低,因此使用热泵将温度升高到加热相关建筑物所需的水平,例如 40°C。同时,抽取的地下水被冷却到 5°C 至 8°C 之间的温度。随后,将冷地下水重新注入冷井。夏季,可以使用冷井中的地下水有效地为建筑物降温。由于热泵的冷却过程,该水被加热到 14°C 至 18°C 之间的温度范围。随后,加热的地下水通过暖井储存在 LT-ATES 中,以便在冬季回收。如果冷却不需要在前一个冬季储存的低温地下水附近安装任何设施,则称为免费冷却。当多余的热量
储存和处置 农药储存:避免储存在冰点以下。长期储存可能导致凝胶形成。加热和搅拌会使材料恢复到可用状态,但不要加热到 250 °F 以上。保持容器密闭。不要通过储存或处置污染水、食物或饲料。本产品会抑制种薯发芽。 农药处置:农药废弃物有毒。不当处置过量的农药、喷雾混合物或冲洗液违反联邦法律。如果无法按照标签说明处理这些废弃物,请联系您所在州的农药或环境控制机构,或联系最近的 EPA 地区办事处的危险废物代表寻求指导。 容器处置:5 加仑或以下的不可再填充容器:不可再填充的容器。不要重复使用或重新填充此容器。如果可以,请提供回收利用。清空后立即对容器(或同等物品)进行三遍冲洗。按如下步骤进行三重冲洗:将剩余内容物倒入施药设备或混合罐中,并在液流开始滴落后沥干 10 秒钟。将容器装满 1/4 的水并重新盖上盖子。摇晃 10 秒钟。将冲洗液倒入施药设备或混合罐中或储存冲洗液以备后用或处理。液流开始滴落后沥干 10 秒钟。重复此过程两次。然后回收或修复,或刺破并在卫生垃圾填埋场处理,或按照州和地方当局批准的其他程序处理。塑料容器也可通过焚烧处理,或者,如果州和地方当局允许,可通过焚烧处理。如果焚烧,请远离烟雾。大于 5 加仑的不可再填充容器:不可再填充容器。不要重复使用或重新填充此容器。如果可以回收,请提供回收。倒空后立即进行三重冲洗或压力冲洗容器(或同等物)。按如下步骤进行三重冲洗:将剩余内容物倒入施药设备或混合罐中。将容器装满四分之一的水。更换并拧紧盖子。将容器倾斜放置并前后滚动,确保至少旋转一圈,持续 30 秒。将容器直立并前后倾斜几次。将容器翻转到另一端并前后倾斜几次。将冲洗液倒入应用设备或混合罐中,或将冲洗液储存起来以备后用或处理。重复此过程两次。按如下方式进行压力冲洗:将剩余内容物倒入应用设备或混合罐中,并在水流开始滴落后继续排水 10 秒。将容器倒置在应用设备或混合罐上方或收集冲洗液以备后用或处理。将压力冲洗喷嘴插入容器侧面,以约 40 psi 冲洗至少 30 秒。水流停止后排水 10 秒
随着世界人口的增长和经济工业化的发展,世界各地的能源消耗正在迅速增加。与此同时,保护化石燃料储量的压力和气候变化正在加剧社会能源链,并为扩大世界道路运输机动性部门寻找清洁燃料来源。氢气是生产可再生能源的最重要因素之一,氢气是完美的燃料,它效率最高,在燃料电池中使用时不会产生排放。它无毒,来自可再生资源,也不是温室气体。许多研究表明,氢气可能仅依赖于石油和其他传统燃料。氢气用于燃料电池发电,也可用作内燃机燃料。与内燃机相比,燃料电池具有显著的效率优势,使其成为将氢转化为电能的主要设备。氢是一种无味无色的气体,氢原子仅由一个质子和一个电子组成,它也是宇宙中最重要的元素,但氢在自然界中并不存在,它总是与其他元素结合,例如水是氢和氧的结合体(H2O)。氢不是能源,而是只能从其他能源中产生,因此它被称为一种能源,是一种储存和运输能源的方式。氢是最简单的无味无珊瑚的情况,氢原子仅由一个质子和一个电子组成。它也是宇宙中最重要的。氢存在于许多有机化合物中,如碳氢化合物,它们构成了我们的许多燃料,如汽油、天然气、生物质、甲醇和丙烷。氢可以通过加热从碳氢化合物中分离出来,这一过程称为重整。大多数氢是通过这种方式从天然气中制成的,但天然气是化石燃料,因此在重整过程中释放的二氧化碳加剧了温室效应。氢气的能量非常高,但体积却非常小,因此需要新技术来储存和运输氢气。燃料电池技术仍处于早期开发阶段,需要提高效率和耐用性,也可用于将水分离成氧气和氢气。这个过程被称为电解。在未来的氢经济中,氢气将从各种能源中生产出来并储存起来以备日常使用,或者可以将其转移到需要的地方,然后干净地转化为热能和电能。能源用于从水中生产氢气,一次和二次能源形式都可再生且与环境相容,从而形成理想的清洁和永久能源系统,这被称为太阳能氢能系统。氢可用于当今使用化石燃料的任何领域,除了特别需要碳的情况。氢可用作英特尔内燃机、涡轮机和喷气发动机的燃料,其效率甚至比化石燃料(例如煤、石油和天然气)更高。汽车、公共汽车、火车、座椅、潜艇、飞机都离不开氢。燃料电池还可将氢直接转化为电能,在交通运输和固定发电领域有多种应用。金属水合物技术在制冷、空调、氢气储存和净化领域有多种应用。氢与氧燃烧可产生氢气,在工业过程和专业领域有多种应用。此外,氢还是计算机、冶金、化学、制药、化肥和食品等众多行业的重要工业气体和原料。
2023 年能源法案 (该法案) 被英国政府称为英国历史上最大的能源立法。除了削减 10 亿英镑的能源费用外,政府还表示,该法案还将释放近 1000 亿英镑的私人投资,为实现净零排放和提高能源安全做出贡献。土地所有者不太可能对核电站的最终取消许可和再利用感到不安,然而,减少电池和抽水蓄能障碍或影响热网的措施引起了更广泛的关注。本简报重点介绍该法案中与农场、庄园和农村企业最相关的部分,并讨论其可能对它们产生的影响。建筑物的能源性能建筑物的能源性能法规似乎处于不断变化的状态。私人租赁部门的最低标准于 2020 年 4 月提高,并提议在 2025 年进一步提高,但这些标准现已被取消。在英格兰和威尔士,已经就能源性能证书的有效性进行了磋商,征求改进建议。该法案为未来的能源效率目标奠定了基础,它规定国务大臣和苏格兰部长可以修改或引入有关场所能源效率的法规。这是因为该法案试图取代因废除影响英国的《1972 年欧洲共同体法案》而失去的权力。此后,该问题将以权力下放的方式处理。法案附带的指导指出,国务大臣打算在 2023 年就英格兰和威尔士的能源效率进行磋商,但现在看来不太可能。什么是电力储存?压缩空气。飞轮。电池。抽水蓄能。电力储存类型的列表还在不断增加。这种创新的爆炸式增长是必要的,因为储存和灵活性对于应对某些可再生能源技术的间歇性至关重要。尽管如此,这种新兴技术一直受到监管模糊性的困扰,因为它本身不发电,但能够在充电时提供电力。该法案将电力储存归类为 1989 年《电力法》下发电的一个独特子集。该法案将储能定义为从电能转换而来的能量,储存起来以备将来再转换为电能。希望这一定义能够为现有和未来监管框架(例如规划和许可)中储能的处理提供清晰性和确定性。通过解决模糊性问题,该法案应鼓励在所有潜在规模上部署更多的储能。智能电表的推广仍在继续智能电表将继续推广。目前,国务大臣为推广智能电表而修改能源许可条件和行业规范的权力将于 2023 年 11 月 1 日到期。该法案规定这些权力将一直有效到 2028 年 11 月 1 日。智能电表的推广始于 2012 年,当时电力供应商被设定了 2019 年的最后期限。此后,截止日期已延长三次;第一次延长到 2020 年底,然后是 2024 年,现在是 2025 年。英国 57% 的电表现在都是智能的,尽管到 2023 年 3 月,约 9% 的电表无法按预期工作(国家审计署)。尽管存在困难,但政府数据显示,使用智能电表和显示器可节省 3% 的电费和 2.2% 的燃气费。鉴于目前的能源价格,房东可能希望与租户合作,鼓励和促进任何剩余的安装。鉴于近十分之一的电表不能按规定工作,房东还应确保已安装的智能电表能够完全正常运行。
要研究的一系列替代方案是逐渐用可再生能源取代 PEC,并在有太阳和风的时候使用电池储存能源。安大略省越来越多的电力由燃气发电机提供,这与企业对清洁电力的需求背道而驰。当电力是由燃气发电产生的时,用电力取代化石燃气的最终用途是没有达到目标。<<>> 至少几十年来,支持燃气发电的论点一直是可再生能源尚不成熟,或者当“没有太阳和风”时它们无法提供电力。这些论点现在似乎没有那么重要了,因为不同的司法管辖区已经表明,可再生能源和燃气的结合可以净化空气并降低能源成本。这项研究显示了各国风能-水能-太阳能的百分比(24 个国家100Pct-Q423-Q324)。加利福尼亚州和美国其他州有几天的能源需求由可再生能源提供 100% 以上,其余的则储存起来以满足夜间电力的部分需求(https://electrek.co/2024/07/29/california-achieves-100-days-of-100-electricity- demand-met-by-renewables/ https://theprogressplaybook.com/2024/04/08/these-12-us-states-now-get- most-of-their-electricity-from-renewables/)。葡萄牙能够全天使用可再生能源(https://thepremierdaily.com/renewable-energy-portugal/)。英国有几天的风力涡轮机发电量超过其能源需求的 50%(https://www.nationalgrid.com/stories/energy- explained/how-much-uks-energy-renewable)。 2023 年,中国安装的太阳能容量超过世界其他地区的总和。安大略省对可再生能源的重视程度不及天然气,与世界其他地区相比,安大略省显得格格不入。<<>> 2024 年 8 月,安大略省政府委托撰写的 ESMIA-Dunsky 报告建议安大略省将风能增加五倍(安大略省被建议减少天然气。道格福特正在做相反的事情 | 独角鲸)。<<>> 安大略省电力分销商协会在其《地方保护力量》报告(2022 年 10 月)中指出,能源节约和需求管理 (CDM) 是最具成本效益的缓解解决方案。此外,它指出“据我们估计,到 2026 年,拟议的解决方案将消除 IESO 2021 年年度规划展望中确定的 94% 的能源供应缺口。到 2032 年,能源供应缺口将被消除,峰值能源缺口将减少 55%”<<>> Pembina 研究所和落基山研究所得出结论,太阳能和风能与能源储存和需求侧管理相结合,可以在很大程度上提供与天然气相同的服务,而且更具成本效益。(可靠、实惠:扩大清洁能源组合的经济案例,Pembina Institue,2019)。<<>>加拿大皇家银行《权力转移》报告(https://thoughtleadership.rbc.com/wp-content/uploads/Power-Shift-Report-EN-1.pdf)指出,“到2040年,安大略省可以通过经济上可行的节约满足其预期需求增长的近20%,即28太瓦时(TWh)。” <<>> 安大略清洁空气联盟(OCAA)发布的研究报告(https://www.cleanairalliance.org/wp-content/uploads/2024/11/Toronto-Solar-Report-nov-2024-nov-21- v_01.pdf https://www.cleanairalliance.org/wp-content/uploads/2023/04/Great-Lakes-Wind-Report-apr-17- v_01.pdf)指出:“如果城市中的许多建筑物和大型停车场都安装太阳能系统,多伦多每年可以产生高达 12 太瓦时(TWh)的清洁能源(见表 1)。这是一个惊人的数字:相当于多伦多2023年总电力消耗的50%以上(23.7 TWh)”和“多伦多在本次分析中的太阳能总潜力几乎是波特兰天然气厂2023年总产量(2.1 TWh)的6倍。” <<>>国际可再生能源机构(IRENA)表示“全球太阳能光伏发电的加权平均成本下降了89%,至0.049美元/千瓦时,比全球最便宜的化石燃料低近三分之一。” (https://www.irena.org/News/pressreleases/2023/Aug/Renewables-Competitiveness-Accelerates-Despite- Cost- Inflation#:~:text=Between%202010%20and%202022%2C%20solar,the%20cheapest%20fossil%20fuel%20globa lly.)<<>> 环境保护组织表示,“陆上风能和太阳能的成本还不到最便宜的化石燃料电力来源的一半。”(https://environmentaldefence.ca/2024/02/08/a-green-比全球最便宜的化石燃料便宜近三分之一。”(https://www.irena.org/News/pressreleases/2023/Aug/Renewables-Competitiveness-Accelerates-Despite- Cost- Inflation#:~:text=Between%202010%20and%202022%2C%20solar,the%20cheapest%20fossil%20fuel%20globa lly.)<<>> 环境保护组织表示,“陆上风能和太阳能的成本都不到最便宜的化石燃料电力来源的一半。”(https://environmentaldefence.ca/2024/02/08/a-green-比全球最便宜的化石燃料便宜近三分之一。”(https://www.irena.org/News/pressreleases/2023/Aug/Renewables-Competitiveness-Accelerates-Despite- Cost- Inflation#:~:text=Between%202010%20and%202022%2C%20solar,the%20cheapest%20fossil%20fuel%20globa lly.)<<>> 环境保护组织表示,“陆上风能和太阳能的成本都不到最便宜的化石燃料电力来源的一半。”(https://environmentaldefence.ca/2024/02/08/a-green-