Pharma Innovation Journal 2023; SP-12(12):1290-1295 ISSN(E):2277-7695 ISSN(P):2349-8242 NAAS评级:5.23 TPI 2023; SP-12(12):1290-1295©2023 TPI www.thepharmajournal.com接收到:03-11-2023接受:08-12-2023 Omkar Saahu渔业钓鱼Dholi钓鱼学院Dholi,Muzaffarpur,Muzaffarpur,Bhirapur,Bhirapur,Bhirapur,Bihhar Basan Basan Basan Basan晚。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Vidyabhooshan晚。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Uma Date。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Lukesh Kumar Banjare晚。 div> Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度,通讯作者:Basant Singh晚。 div> Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Lukesh Kumar Banjare晚。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度,通讯作者:Basant Singh晚。 div> Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度,通讯作者:Basant Singh晚。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度
妊娠糖尿病(GDM)及其相关的并发症,大糖症,在怀孕期间面临重大挑战。本评论探讨了这些疾病的流行病学方面,病理生理学,并发症和长期后果,重点是对早期检测和高级管理策略的需求。GDM的流行率在全球范围内有所不同,特别关注印度,在大巨粒和GDM之间的相关性很明显。早期产前监测和血糖控制已被确定为减少大糖体发生率的有效策略。了解GDM的病理生理学揭示了β细胞功能障碍和慢性胰岛素抵抗的复杂相互作用,从而导致血糖水平升高。这种干扰有助于大粒细胞,其特征在于异常大的婴儿的出生。与大型症相关的并发症不仅限于分娩;母亲可能会遇到旷日持久的劳动,子宫和泪水的风险增加,而新生儿则面临着肩膀肌张力障碍和新生儿黄疸的挑战。此外,子宫内GDM暴露的持久意义与儿童肥胖和代谢综合征有关。该评论还讨论了有希望的研究方向。糖基化标记的研究旨在改善大型症预测,从而更好地管理和护理受影响的妊娠。此外,移动技术的集成(例如GDM Health智能手机解决方案)提供了对血糖水平和量身定制的反馈的远程监控,并有可能革新GDM管理。在应对GDM和宏观疾病提出的挑战时,必须采用多方面的方法。早期有效的产前护理,再加上警惕的血糖控制,对于母亲及其婴儿的福祉至关重要。继续研究创新筛查和管理方法将进一步增强妊娠结局和长期健康。医疗保健专业人员对这些疾病及其广泛影响有了全面的了解,在支持准妈妈并确保母亲和儿童的光明和健康的未来方面发挥着关键作用。
本报告由巴特尔研究所编写,记录了美国能源协会 (USEA) 与美国能源部 (DOE) 合作开展的工作。美国政府及其任何机构、其任何雇员、巴特尔研究所和其他共同赞助者均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何责任或义务,也不表示其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
准确地对肿瘤生物学进行建模并测试对患者衍生细胞的新疗法对于开发针对患者特定疾病的个性化治疗方案至关重要。血管化的微肿块(VMT)或“芝士肿瘤”是一种生理性临床前癌模型,它结合了天然人类肿瘤微环境的关键特征,可在透明的微富集平台中,可在体外快速药物筛查。在此,我们优化了使用新鲜的结直肠癌(CRC)活检和手术切除术来生成患者来源的VMT(PVMT)的方法,以测试单个患者水平的药物敏感性。响应标准化疗和TGF-βR1抑制作用,我们观察到来自6例患者活检的PVMT之间的异质反应,PVMT概括了肿瘤的生长,组织学特征,代谢异质性和实际CRC肿瘤的药物反应。我们的结果表明
量子储存计算(QRC)利用了量子系统的信息处理功能来解决非平凡的时间任务,从而改善了其经典对应物。最近的进步表明,QRC利用了扩大的希尔伯特空间的潜力,但是实时处理和实现量子优势的实时利用是有效地利用资源是对可行的实验实现的巨大挑战。在这项工作中,我们提出了一个适用于实时QRC的光子平台,基于储层的物理集合,以相同的光学脉冲形式通过封闭环循环。理想的操作达到了最大能力,但统计噪声显示出破坏任何量子的改进。我们提出了一种克服此限制并维持QRC性能的策略,当系统的规模扩大时。该协议是为实验实现而设计的,该协议具有当前技术的可行性。
本报告是机密的,仅用于解决所有相关规划政策和控制以及适用于Muswellbrook泵送水力储能上层水库地理技术调查的环境问题的目的。根据SMEC Australia Pty Limited(“ SMEC”)和AGL Energy Pty Ltd(“ AGL”)之间的咨询协议提供了本报告,根据该协议,SMEC对此进行了针对AGL的特定和有限的任务。该报告严格限于其中所述的事项,并受到其中的各种假设,资格和限制的约束,并且不适用于其他事项。SMEC不表示本报告中规定的范围,假设,资格和排除条件适合其他目的,也足以满足该报告的内容涵盖您可能将其视为目的的所有事项。
神经回路的连接模式形成一个复杂的网络。这些电路中的信号如何表现为复杂的认知和适应性行为仍然是神经科学中的核心问题。伴随连接组和人工智能的进步从根本上开放了新的机会,以了解连接模式如何影响生物脑网络中的计算能力。储层计算是一种多功能范式,它使用高维动力系统的非线性动力学来执行计算和近似认知功能。在这里我们提供Conn2Res:一种开源Python工具箱,用于实现生物神经网络作为人工神经网络。conn2res是模块化的,允许施加任意体系结构和任意动态。该工具箱允许研究人员输入使用多种技术重建的连接组,从图形跟踪到非侵入性扩散成像,并施加多个动力学系统,从简单的尖峰神经元到磁性动力学。CONN2RES工具箱的多功能性使我们能够在神经科学和人工智能的汇合处提出新问题。通过将函数重新概念化为计算,Conn2Res为对大脑网络中结构功能关系的更机械理解设定了阶段。
自主系统的最新进展促使对下一代自适应结构和材料的强烈需求,以在其机械域中拥有更多的内置智能,即所谓的机械智能(MI)。以前的MI尝试主要集中在特定的设计和案例研究上,以实现MI的有限方面,并且在以有效而有效的方式构建和整合智能的不同元素时缺乏系统的基础。在这里,我们提出了一种新方法,以通过物理储层计算(PRC)框架实现集成的多功能MI来创建所需的基础。也就是说,同时体现了计算能力和智力的各种要素,即直接在机械领域中的感知,决策和指挥,从传统的自适应结构中推进了仅依赖附加数字计算机的常规自适应结构,这些结构仅依赖于附加的数字计算机和大量的电子设备来实现智能。作为一个示例平台,我们通过利用隐藏在其高度自由的非线性动力学中的PRC功率来构建具有MI集成元素的机械智能语音元结构。通过分析和实验研究,我们发现了从自我调整波控制到基于波浪的逻辑门的多种自适应结构功能。这项研究将为建立未来的新结构提供基础,这些新结构将极大地超过最新的现状,例如降低功耗,更直接的互动以及在严酷的环境或在网络攻击下更好的生存能力。此外,它将在不承担板载计算机的负担不足的情况下向系统中添加新功能和自主权。
在这项研究中,使用二维图像用于使用两步过程(8,14)来表征谷物和孔的形态。在第一步中,捕获图像。在第二步中,使用图像分析软件扫描了此类特征的面积和平均孔接触角,该软件能够准确测量孔隙和谷物空间的几个形态参数,如图1所示。本研究利用面积测量和接触角作为所有分析的标准参数。形态特征是根据面积和接触角度计算的,这将信息准确性的水平分为两个维度。该信息被认为是“大数据”,并分析了以找到可以减少成本和时间的答案。
美国爱达荷州伯克利国家实验室的能源与环境科学技术局。美国爱达荷州伯克利国家实验室的能源与环境科学技术局。美国爱达荷州伯克利国家实验室的能源与环境科学技术局。