美国爱达荷州伯克利国家实验室的能源与环境科学技术局。美国爱达荷州伯克利国家实验室的能源与环境科学技术局。美国爱达荷州伯克利国家实验室的能源与环境科学技术局。
摘要在过去十年中,通过应用新技术,我们对神经疾病的理解得到了极大的增强。全基因组关联研究已突出了神经胶质细胞作为疾病的重要参与者。单细胞分析技术正在以未注明的分子分辨率提供神经元和神经胶质疾病状态的描述。然而,我们对驱动疾病相关的细胞态的机制以及这些状态如何促进疾病的机制仍然存在巨大差距。我们理解中的这些差距可以由基于CRISPR的功能基因组学桥接,这是一种有力的系统询问基因功能的方法。在这篇综述中,我们将简要回顾有关神经疾病相关的细胞态的当前文献,并引入基于CRISPR的功能基因组学。我们讨论了基于CRISPR的筛查的进步,尤其是在相关的脑细胞类型或细胞环境中实施时,已经为发现与神经系统疾病相关的细胞状态的机制铺平了道路。最后,我们将描述基于CRISPR的功能基因组学的当前挑战和未来方向,以进一步了解神经系统疾病和潜在的治疗策略。
人工神经网络(ANN)的连通性与在生物神经网络(BNN)中观察到的连通性不同。实际大脑的接线可以帮助改善ANNS体系结构吗?我们可以从ANN中了解哪些网络功能在解决任务时支持大脑中的计算?在连通性的中间/宏观级别上,ANN的体系结构经过精心设计,这些设计决策在许多最近的绩效改进中具有至关重要的重要性。另一方面,BNN在所有尺度上都表现出复杂的新兴连通性模式。在个人层面上,BNNS连接性是由脑发育和可塑性过程引起的,而在物种层面上,在进化过程中的自适应重新构造也起着主要作用,可以塑造连通性。近年来已经确定了无处不在的大脑连接性特征,但是它们在大脑执行具体计算的能力中的作用仍然很少了解。 计算神经科学研究仅揭示了特定的大脑连接性特征对抽象动力学特性的影响,尽管实际上几乎没有探索真实的大脑网络拓扑对机器学习或认知任务的影响。 在这里,我们提出了一项跨物种研究,采用混合方法整合了真实的大脑连接组和生物回声状态网络,我们用来求解具体的内存任务,从而使我们能够探究在求解任务解决方面的真实大脑连接模式的潜在计算模拟。 我们还提出了一个框架Bio2Art,以映射和扩展可以集成到经常性ANN中的真实连接组。无处不在的大脑连接性特征,但是它们在大脑执行具体计算的能力中的作用仍然很少了解。计算神经科学研究仅揭示了特定的大脑连接性特征对抽象动力学特性的影响,尽管实际上几乎没有探索真实的大脑网络拓扑对机器学习或认知任务的影响。在这里,我们提出了一项跨物种研究,采用混合方法整合了真实的大脑连接组和生物回声状态网络,我们用来求解具体的内存任务,从而使我们能够探究在求解任务解决方面的真实大脑连接模式的潜在计算模拟。我们还提出了一个框架Bio2Art,以映射和扩展可以集成到经常性ANN中的真实连接组。我们发现在物种和任务之间保持一致的结果,表明,如果允许最小的随机性和连接的多样性,则具有生物学启发的网络以及经典的回声状态网络的性能以及经典的回声状态网络。这种方法还使我们能够表明核次间连通模式多样性的重要性,强调了决定神经网络连通性的随机过程的重要性。
摘要:地下储氢已被公认为储存大量氢气的关键技术,有助于氢经济的工业规模应用。然而,人们对地下储氢的了解甚少,导致项目风险很高。因此,本研究考察了盖层可用性和氢气注入率对氢气回收率和氢气泄漏率的影响,以解决与地下储氢有关的一些基本问题。建立了三维非均质储层模型,并利用该模型分析了盖层和氢气注入率对氢气地下储存效率的影响。结果表明,盖层和注入率对氢气泄漏以及捕获和回收的氢气量都有重要影响。结论是,当没有盖层时,较高的注入率会增加氢气泄漏。此外,较低的注入率和盖层可用性会增加回收的氢气量。因此,这项工作为地下储氢项目评估提供了基本信息,并支持能源供应链的脱碳。
摘要 — 我们提出了一种回声状态网络 (ESN) 的近似方法,该方法可以基于超维计算数学在数字硬件上有效实现。所提出的整数 ESN (intESN) 的储存器是一个仅包含 n 位整数的向量(其中 n < 8 通常足以获得令人满意的性能)。循环矩阵乘法被高效的循环移位运算取代。所提出的 intESN 方法已通过储存器计算中的典型任务进行验证:记忆输入序列、对时间序列进行分类以及学习动态过程。这种架构可显著提高内存占用和计算效率,同时将性能损失降至最低。在现场可编程门阵列上的实验证实,所提出的 intESN 方法比传统 ESN 更节能。
高效的量子态测量对于最大限度地从量子系统中提取信息非常重要。对于多量子比特量子处理器而言,开发可扩展的架构以实现快速和高保真读出仍然是一个尚未解决的关键问题。在此,我们提出使用储层计算作为超导多量子比特系统量子测量的资源高效解决方案。我们考虑一个小型的约瑟夫森参数振荡器网络,它可以以最小的设备开销实现,并且与被测量子系统位于同一平台上。我们从理论上分析了这种设备作为储层计算机的运行,以根据量子统计特征对随机时间相关信号进行分类。我们将该储层计算机应用于联合多量子比特读出的测量轨迹的多项分类任务。对于现实条件下的 2 量子比特色散测量,我们证明了分类保真度可靠地超过最佳线性滤波器,仅使用 2 – 5 个储层节点,同时需要的校准数据少得多 — 每个状态只需几次拍摄。我们通过分析网络动态来了解这一卓越性能,并直观地了解储层处理。最后,我们演示了如何操作该设备以同等效率和轻松校准的方式执行 2 量子比特状态断层扫描和连续奇偶校验监控。该储层处理器避免了其他机器学习框架常见的计算密集型训练,并且可以作为集成低温超导设备实现,用于在计算边缘低延迟处理量子信号。
摘要 — 本研究提出了一种混合信号、储层计算神经网络 (RC-NN),用于使用智能可穿戴设备进行家庭实时健康监测。所提出的技术在心电图 (ECG) 信号的压力检测和使用融合人口统计和生理信息的融合人工智能 (AI) 模型的心脏病检测中得到了证明。RC-NN 使用具有短期记忆的静态随机储层层将输入数据非线性投影到高维平面,并在输出层使用线性 AI 模型轻松分离。RC-NN 采用 65nm CMOS 工艺设计,检测压力和心脏病的平均准确率分别为 92.8% 和 86.8%,同时分别消耗 10.97nJ/推理和 2.57nJ/推理。
地热能(地球的自然热量)的非电气用途均记录了历史。电力于1904年在意大利拉德雷洛(Larderello)首次从地热蒸汽产生,但广泛利用被推迟到第二次世界大战之后。那时,在Larderello获得的经验表明,生产性的井排出了,可用于发电的过热蒸汽。在意大利和其他国家 /地区,对与拉德雷罗类似的地热区进行了探索。发现了一个或两个这样的区域,通常被称为“蒸气主导的系统”(例如,加利福尼亚州的间歇泉,在1920年代覆盖)。水力发电通常仍然可用,化石燃料的成本低,而地热能被认为是不可靠的。在大多数地热区域中,最热的井排出了水和蒸汽的混合物,液态水是主要的流体。这些混合流体系统通常称为热水或水为主系统。钻探到此类系统的井首先被视为故障,但是在1950年代初期,在新西兰获得的经验表明,蒸汽分数可以分开以发电。随后在全球范围内发展得更快,但是最有利的4'蒸气主导地位”的地区。新西兰以新的关注水为主的系统带领世界。地热储层工程很快成为公认的专业,许多技术从石油和天然气场工程和地下水水文学转移。但是,这些新的热流体储层在三个方面与知名类型有显着不同:(1)高温是至关重要的,不是偶然的; (2)在两相的关系中,气体和溶解盐的组成和杂乱在修饰水和蒸汽的特性方面非常重要; (3)地热储层通常涉及比其他类型更多的综合地质。因此,在新西兰开发的水库工程似乎已经避免了过度简化的趋势。新西兰的努力也从一个团队方法中受益匪浅,该方法利用地球科学家和工程师的专业发现,不仅在新西兰,而且在印度尼西亚,印度尼西亚和菲律宾的,发现,消除和生产地热液体。此外,专家之间免费交流信息的自由交换是规则,而不是例外。本书应被视为利用所有地球科学和工程学的重要一步,以获得地热储层工程的协调景观。
及早发现患者生物信号中的恶性模式可以挽救数百万人的生命。尽管基于人工智能的技术在稳步改进,但这些方法的实际临床应用大多局限于对患者数据的离线评估。先前的研究已将有机电化学器件确定为生物信号监测的理想候选。然而,它们在实时模式识别中的应用从未得到证实。在这里,我们制作并表征了由有机电化学晶体管组成的受大脑启发的网络,并使用储层计算方法将它们用于时间序列预测和分类任务。为了展示它们在生物流体监测和生物信号分析中的潜在用途,我们对四类心律失常心跳进行了分类,准确率为 88%。这项研究的结果为生物相容性计算平台引入了一种以前未探索过的范例,并可能有助于开发能够与体液和生物组织相互作用的超低功耗硬件人工神经网络。
迄今为止,来自自体T细胞的两个嵌合抗原受体(CAR)-T细胞产物已获得美国食品药物管理局(FDA)的批准。由于制造过程昂贵且延长的制造程序,因此,逐案的自体T细胞产生设置在很大程度上被视为其大规模临床使用的关键限制原因。此外,活化的CAR-T细胞主要表达免疫检查点分子,包括CTLA4,PD1,LAG3,废除了CAR-T抗肿瘤活性。此外,CAR-T细胞疗法有效导致一些毒性,例如细胞因子释放综合征(CRS)。因此,具有较高抗肿瘤作用的通用同种异体T细胞的发展至关重要。因此,尤其是基因组编辑的技术,尤其是定期间隔短的短质体重复(CRISPR)-CAS9,目前正在用于建立具有对免疫细胞抑制分子的耐药性的“现成” CAR-T细胞。实际上,通过CRISPR-CAS9技术同时消融PD-1,T细胞受体α常数(TRAC或TCR)以及β-2微球蛋白(B2M)也可以支持具有对PD-L1的耐药性的通用CAR-T细胞的生产。。的确,β2M或TARC的消融会严重阻碍那些表达异源HLA-I分子的同种异体T细胞,从而使同种异体健康供体T细胞的CAR-T细胞产生具有较高持久性体内的CAR-T细胞。在此,我们将在肿瘤免疫疗法的背景下简要概述CAR-T细胞的应用。更重要的是,我们将讨论有关基因组编辑技术在制备可以有效抵抗肿瘤逃生的通用CAR-T细胞或细胞的应用的最新发现,并特别关注CRISPR-CAS9技术。