零能源建设电力 - 热热双层能量优化控制方法Kong Lingguo 1,Wang Shibo 1,Cai Guowei 1,Liu Chuang 1,Guo Xiaoqiang 2
固定式氢燃料电池正成为一种提供清洁灵活电力的解决方案。可再生能源电解可以为燃料电池产生氢气,但使用时可能需要储存数天的氢气,以平滑可再生能源的变化。在使用氢气作为备用电源系统的情况下,也需要储存,必要的目标储存时间为 96 小时,以满足美国国家消防协会规定的要求。这是一个挑战,因为压缩气体或低温氢气储存在操作上成本高昂,而且对于这些储存时间,大规模储存效率低下,而用于储存的盐穴并不广泛,需要管道才能使其适用于更大规模的应用。因此,已经进行了大量工作,以确定在较低压力和非低温下运行的大规模氢气储存的材料解决方案。此外,在大多数低温氢气储存条件下,氢气会以“沸腾”的形式从储罐中自然流失。这些沸腾事件代价高昂,因此迫切需要能够有效捕获沸腾氢气的材料。
5 https://faraday.ac.uk/wp- content/uploads/2019/10/191025_Rapid_market_assessment_of_storage_in_developing_countries.pdf 6 https://about.bnef.com/blog/net-zero-road-transport-by-2050-still-possible-as-electric-vehicles-set-to-quintuple-by-2025/ 7 https://faraday.ac.uk/wp-content/uploads/2019/10/191025-Rapid-market-assessment-of-storage-in-developing- countries.pdf 8 https://www.energy-storage.news/bloombergnef-predicts-30-annual-growth-for-global-energy-storage-market-to-2030/
氢能作为一种可持续能源,最近已成为一种越来越重要的可再生能源,因为它能够为零排放汽车的燃料电池提供动力,并有助于降低二氧化碳排放量。此外,氢具有高能量密度,可用于广泛的应用。它确实是未来的燃料,但如何根据技术配置、性质和效率机制分析最成功的储氢方式仍不完全清楚。本研究对当前研究提出的历史储氢技术进行了评估、分析和研究。储氢系统分为两类:物理型和材料型。第一类涉及将氢储存为液体、冷/低温压缩和压缩气体。化学吸附/化学吸附和物理吸附/物理吸附分别是材料型储存的两个主要子类。本文对氢储存技术的定量和定性分析进行了评估。此外,本报告回顾了储氢系统目前面临的主要安全性和可靠性问题。提出了一些建议,为未来的风险和可靠性分析奠定基础,确保安全可靠的运行。关键词
多种重要的化学合成过程都依赖于氢气,氢气的生产和使用通常由其与这些市场之一的联系所驱动。例如,氨是世界上产量最高的化学品之一,它主要依赖于氢气。氨主要用于农业肥料,被认为是过去一个世纪每单位土地农业产量翻番的主要原因 [4]。氢气的另一个主要用途是作为脱硫过程中石油精炼的催化剂。除了化学生产之外,氢气还用作钢铁生产中的还原剂,并且已被证明可以替代生铁生产中的冶金煤。它甚至用于食品的氢化反应中,以产生更耐储存的半固体脂肪。
有机分子晶体,例如对苯二酚笼状物,可能是很有前途的储氢材料。笼状物是由客体分子(这里是 H 2 )和形成空腔的宿主分子组成的超分子化合物。对苯二酚 (HQ) 与气体(例如 CO 2 1 或 CH 4 2 )的形成在文献中是众所周知的。但是,对于氢气捕获,一些重要的限制限制了这种材料的发展,例如高压和低笼状物形成动力学。Han 等人 3 通过预先形成无客体结构,然后在 350 bar 下用 H 2 填充它,获得了氢 HQ-笼状物。人们还进行了其他尝试来提高对苯二酚笼状物的存储容量,例如添加 C 60 4,但迄今为止尚未发现最佳系统。本研究开发的策略是将对苯二酚浸渍在多孔材料的微孔内,以利用限制效应来启动限制包合物的形成并改善包合动力学。为此,开发了一种新颖的浸渍方法,并在几种具有不同化学性质(碳、聚合物、二氧化硅)和不同孔径(1 至 15 纳米之间)的材料上进行了测试。使用 TGA-DSC、氩气孔隙率仪和 MAS-NMR 来表征新型复合材料。有机晶体的浸渍率可达到混合材料质量的 35%。用磁悬浮天平测量氢的存储容量。对于浸渍在多孔聚苯乙烯基材料中的 HQ 的情况,通过将温度在 0 到 100°C 之间循环可以达到 HQ 包合物的形成。在 20 bar 氢气压力下,经过 10 个温度循环,样品的存储容量从每克样品 0.1 wt.% 增加到每克 HQ 1.3 wt.%(或每克 HQ 7 wt.%)。此外,该系统在室温下稳定,P = 1 bar 氢气压力下,每克 HQ 的存储容量为 5.7wt.% H 2,并且在 100°C 时可完全释放 H 2。使用 MCM-41+HQ 等其他材料也获得了类似的存储容量。
使用储能设备对于零能耗结构的开发和维护至关重要。它们是可再生能源的最佳利用和管理能源供应和需求的间歇性所必需的。许多不同类型的存储系统(电化学、热、机械等)要么已在商业上可用,要么即将开发用于建筑规模。不同的技术具有不同的功能和特性,因此在深入进行技术经济研究之前,找到一个评估您的可能性的系统非常重要。当前和新兴储能技术的所有方面,以及它们的用途、未来前景和历史背景,都将接受严格的评估。电化学和电池存储、热存储、热化学存储、飞轮存储、压缩空气存储、抽水蓄能、磁存储、化学和氢存储以及氧化还原流存储等储能技术都包括在内。还讨论了替代储能方法的新研究,以及该领域的重大进展和发现。
2.3 运行约束 储能电站的规划与运行决策存在强耦合关 系。在不同位置接入储能电站将对系统运行的安 全性、经济性与可靠性造成不同影响。为了支持网 侧储能选址定容方案的科学决策,需充分考虑储能 充放电特性、有功 / 无功综合潮流、电压偏移限制、供 电可靠性要求等关键因素,进行精细化的运行建 模。故引入运行约束如下。 2.3.1 功率平衡约束
hibit降低了渗透性,因此需要建立有效的地热系统(EGS)以利用深度地热能。在EGS中,用于液压压裂用于储层刺激,以人为增强的地热储层具有较高的渗透性。当前的深地热储量刺激技术主要是从石油和天然气部门采用的液压压裂过程中借来的,对刺激性能,地震风险控制和有效的地热储层的热萃取产生了限制。这项研究总结了深度地热能的液压压裂的特征:(1)剪切机理主导着断裂诱导的损伤。(2)冷水注入诱导的差分温度所产生的拉伸应力鼓励裂缝进一步传播。(3)连续的水注入使孔压力保持高于地层压力,从而为裂缝保持良好的条件保持开放。因此,EGS中的液压压裂不需要支撑剂。这与石油和天然气井的液压破裂完全不同,这在很大程度上依赖于支撑剂。此外,这项研究系统地分析了EGS的四个主要挑战:低发电能力,注入和生产井之间的连通性差,诱发破坏性地震的风险以及在没有补贴的情况下获得利润的困难。这项研究通过数值模拟研究了Regs的优势。根据创新的破裂和能量回收的各个方面,本研究提出了一种与能源存储相结合的创新增强的开发模式,称为再生工程的地热系统(REGS)。结果表明,与水平井以及不等的间距,区域和注射水的体积的多阶段分裂可以增强注入和生产井之间的连通性。破裂过程在Regs中进行了优化。具体来说,采用了多阶段裂纹。在每个阶段,早期的水注射率迅速增加,并在晚期逐渐下降。这可以防止在井眼压力下突然波动,从而控制诱发地震的幅度并防止破坏性地震。Regs整合了可再生能源的大规模地下存储,实现了多能补充并增强了Regs项目的生产寿命和盈利能力。这项研究的最终成员将为试点项目和标准化促进技术的标准化奠定基础,用于融合的热量和发电,与储能集成在一起,用于中国深地热能。