• 从全生命周期的角度论证了氢能的完整供应链体系,涵盖了生产、运输、储存、最终使用和最终回收的各个环节; • 探讨氢能作为潜在未来能源的作用及其对能源安全的重要性; • 分析从可再生能源中生产绿色氢气的方法,设计清洁的氢能供应链 • 明确大规模氢能存储在衔接化石燃料能源向可再生能源的能源转型中的作用及其对碳达峰和碳中和双目标的贡献 • 给出一些技术选择,以降低成本并确保氢能发展的安全性、稳定性和可持续性
A Review on the Utilization of Energy Storage System for the Flexible and Safe Operation of Renewable Energy Microgrids LIU Chang 1 , ZHUO Jiankun 1* , ZHAO Dongming 2 , LI Shuiqing 1 , CHEN Jingshuo 2 , WANG Jinxing 1 , YAO Qiang 1
中国和德国同为制造业大国,都设置了在本世纪中叶实现净零排放的气候目标,因此在清洁能源转 型领域面临着诸多共同挑战。尽管俄乌冲突全面爆发导致了全球范围的能源安全焦虑,德国仍在为实现 2045 年气候中性目标而加速布局可再生氢能政策和产业,以有效支撑本国的清洁能源转型进程。作为极 具气候雄心的发达经济体,德国在氢能经济领域的经验和教训可以帮助中国培育本国处于起步阶段的可再 生氢产业链。本文从氢能治理结构、提高氢能经济可行性措施和促进氢能应用等方面剖析了德国 2020 年 6 月发布的《国家氢能战略》。结合中国 2021 年 3 月发布的《氢能产业发展中长期规划( 2021-2035 年)》 以及电动汽车在中国的发展历程,作者基于中国具体国情提出了以下有针对性的政策建议: ● 为更好更快建立工业化规模的低碳氢供应链,中国应在充分利用本国现有化石燃料制氢产能的同时激 励可再生氢产能的持续增长。基于中国在电动车发展助力交通行业减排过程中所取得的经验,在氢能 产业链规模化之前,扩大氢能的下游需求与上游的低碳生产应该区分对待。扩大可再生氢产能应与鼓 励氢能大规模应用同时推进,从而在氢能产业链的上、下游之间产生正向激励效应。另一方面,本世 纪初以来全国燃煤发电装机的快速扩张已提前锁定了巨量煤炭需求,中国应以此为鉴,尽量避免进一 步扩大现有化石燃料制氢产能规模。 ● 氢能管制应更多侧重其能源属性。目前,中国仍将氢气作为危险化学品进行标识和监管,对其能源属 性没有予以充分考量和反映。对氢能的危化品定位在生产选址、道路运输、市场准入、终端应用以及 标准化等方面带来了一系列重大挑战。中国未来是否能够更加合理地对氢能进行定位是实现氢能规模 经济性的重要先决条件。 ● 可再生氢在工业深度脱碳中的作用应被优先考虑,并重点聚焦钢铁、石油化工和煤化工产业。鉴于可 再生氢在重工业应用中的巨大潜力,工业脱碳应成为中国实现可再生氢供应链规模经济性的重点领域。 除了尽快将排放密集型的工业行业纳入全国碳排放交易体系,还应考虑将德国乃至欧洲的创新政策和 金融政策工具针对中国国情进行定制和试点,尤其是绿钢的政府采购、碳差价合约和气候友好型原材 料的需求配额。 ● 为更好促进可再生氢在中国的发展,应建立氢能部际协调机制,并最好由国务院直接领导。否则,氢 能治理的职责如果长期分散在在不同部委之间,将会阻碍氢能的长足发展,并使中国错失先机。建议 由该高层协调机制主导对建设跨省氢能管道这一无悔基础设施的必要性和规划展开调查研究,以积极 应对中国氢气生产、消费地理错配的挑战。 ● 中央和地方政府补贴氢能发展时,应在制度设计层面防范“骗补”乱象并促进公平竞争。根据以往补 贴政策实施过程的经验教训——尤其是电动汽车领域——中国氢能监管框架应重视制约与平衡,并纳 入多重监督机制。 ● 为了缩小与发达经济体在氢能核心技术领域的差距,中国应考虑为包括跨国公司与本土企业在内的市 场主体营造更加公平的竞争环境。如果能够大幅加强知识产权保护、积极消除市场准入壁垒,中国将 能更好地深化与发达经济体在可再生氢领域的国际合作,并吸引欧盟特别是德国公司来华展开互利双 赢的技术合作和商业投资。
GRZ Technologies 的愿景是让世界由可再生能源驱动——无论白天还是黑夜,无论夏天还是冬天。为了实现这一目标,我们必须用安全、经济高效且可持续的能源解决方案取代化石能源系统,而氢是其中重要的能源载体。引入新的环保能源系统是一项全球挑战。跨国家和跨大洲的合作至关重要。因此,GRZ 与全球各地的组织合作,共同应对这些全球挑战。我们的合作伙伴包括现代汽车公司、菲舍尔集团、AMPO、萨班哲、Susten、Auto AG、Gaznat 和梅塞尔天然气等。
地质储氢,例如在枯竭的天然气田 (DGF) 中,可以克服可再生能源领域的供需不平衡,促进向低碳排放社会的过渡。一系列地下微生物利用氢,这可能对氢的回收、堵塞和腐蚀具有重要意义。我们收集了英国大陆架 75 个 DGF 的温度和盐度数据,并根据一组新的微生物生长限制,根据不利微生物影响的风险绘制了它们用于储氢的适用性。风能和太阳能运营能力以及海上天然气和凝析油管道基础设施的数据与微生物风险分类叠加,以优化绿色氢生产、运输基础设施和地下储存的地理中心。我们建议将氢气储存在 9 个 DGF 中,这些 DGF 由于温度 > 122 ◦ C 而没有微生物风险,或者储存在 35 个低风险 DGF 中,温度 > 90 ◦ C。我们建议不要使用温度 < 55 ◦ C 的高风险 DGF (9 DGF)。与可再生能源生产中心和适合重新用于运输氢气的废弃管道相结合,表明北海南部无风险和低风险的 DGF 是最适合储氢的候选地。我们的研究结果为英国地质储氢的选址提供了建议。我们的方法适用于全球任何地下多孔岩石系统。
摘要 — 通过收集和整理历史数据和典型模型特征,使用 Simulink 开发了基于氢能存储系统 (HESS) 的电转气 (P2G) 和气转电系统。详细研究了所提出系统的能量转换机制和数值建模方法。提出的集成 HESS 模型涵盖以下系统组件:碱性电解槽 (AE)、带压缩机的高压储氢罐 (CM 和 H 2 罐) 和质子交换膜燃料电池 (PEMFC) 电堆。基于典型的 UI 曲线和等效电路模型建立了 HESS 中的单元模型,用于分析典型 AE、理想 CM 和 H 2 罐和 PEMFC 电堆的运行特性和充电/放电行为。在配备风力发电系统、光伏发电系统和辅助电池储能系统 (BESS) 单元的微电网系统中模拟和验证了这些模型的有效性。 MATLAB/Simulink 仿真结果表明电解器电堆、燃料电池电堆及系统集成模型能够在不同工况下工作。通过测试不同工况下 HESS 的仿真结果,分析了氢气产出流量、电堆电压、BESS 的荷电状态 (SOC)、HESS 的氢气压力状态 (SOHP) 以及 HESS 能量流动路径。仿真结果与预期一致,表明集成 HESS 模型能够有效吸收风电和光伏电能。随着风电和光伏发电量的增加,HESS 电流增加,从而增加氢气产出量来吸收剩余电量。结果表明 HESS 比微电网中传统 BESS 响应速度更快,为后期风电-光伏-HESS-BESS 集成提供了坚实的理论基础。
▪ 研究仅限于陆上北珀斯盆地和南卡那封盆地。 ▪ 23 个油田被评估为“枯竭”,其中有一些历史产量。 ▪ 生产历史用于估计存储容量 – 截至 2015 年 6 月的产量可通过 WAPIMS 获取 – 公开文件报告 – 西澳陆上珀斯盆地油田地图集(Owad-Jones & Ellis,2000 年) ▪ 气田,总天然气产量用于估计存储容量。 ▪ 油田,使用 FVF 换算的石油产量用于估计存储容量。 ▪ 需要考虑盖层和垫层气体积的密封能力。 ▪ 未考虑当前(或未来)的商业用途(Tubridgi、Mondarra)
摘要:未来低碳系统具有非常高的可变可再生能源份额,需要复杂的模型来优化投资和运营,这些模型必须捕捉高度的部门耦合,包含高水平的运营和时间细节,并且在考虑季节性存储时,能够在长期内优化投资和运营。标准能源系统模型通常不能充分解决所有这些问题,而这些问题在考虑对氢等新兴能源载体的投资时非常重要。在 SpineOpt 中建立了爱尔兰电力系统的先进能源系统模型,该模型考虑了许多未来情景,并探索了大规模采用氢作为低碳能源载体的不同途径。该模型包含高度的时间和操作细节,通过氢捕获部门耦合,并展示了对大型地下氢存储的投资和运营的优化。结果强调了模型细节的重要性,并展示了当系统的灵活性需求没有得到充分满足时,可再生能源的过度投资是如何发生的。案例研究显示,到 2030 年,对氢能技术的投资仅限于燃料和碳成本高、氢能需求量大(在这种情况下,由大型氢能网络促进的供热需求推动)或电解槽资本成本和效率取得突破的情景。然而,到 2040 年,在所有考虑的情景中,对氢能技术的投资都会达到高水平。与 2030 年的结果一样,当对氢能的需求很高时,投资水平最高,尽管这一水平明显高于 2030 年,大型电解槽的投资增长了 538%。氢燃料压缩空气储能成为所有情景中强有力的投资候选,可实现具有成本效益的电能-氢能-电能转换。
GRZ Technologies 的愿景是让世界由可再生能源驱动——无论白天还是黑夜,无论夏天还是冬天。为了实现这一目标,我们必须用安全、经济高效且可持续的能源解决方案取代化石能源系统,而氢是其中重要的能源载体。引入新的环保能源系统是一项全球挑战。跨国家和跨大洲的合作至关重要。因此,GRZ 与全球各地的组织合作,共同应对这些全球挑战。我们的合作伙伴包括现代汽车公司、菲舍尔集团、AMPO、萨班哲、Susten、Auto AG、Gaznat 和梅塞尔天然气等。
目标和意义:本项目的目标是合成和表征新型改性硼化镁 MgB2 材料,该材料具有改进的氢循环动力学和储氢能力,并证明其能够满足美国能源部 (DOE) 的储氢目标。如果成功,固态改性 MgB2 材料将比市场上的高压压缩 H2 (700 bar) 或液态 H2 替代车载储氢系统更安全、更便宜。背景:硼氢化镁 Mg(BH4)2 是少数几种已证实重量储氢容量大于 11 wt% 的材料之一,因此已证实可用于满足 DOE 储氢目标的储氢系统。然而由于动力学极其缓慢,Mg(BH 4 ) 2 和 MgB 2 之间的循环只能在高温(~400°C)和高充电压力(~900 bar)下完成。最近,四氢呋喃 (THF) 与 Mg(BH 4 ) 2 复合已证明可以大大改善脱氢动力学,能够在 <200°C 下快速释放 H 2 以高选择性生成 Mg(B 10 H 10 )。然而,这些类型的材料的氢循环容量要低得多。该项目专注于开发改性 MgB 2,方法是将镁硼醚脱氢扩展到 MgB 2 或在添加剂存在下直接合成改性 MgB 2。该项目旨在改善镁硼化物/镁硼氢化物系统的氢循环动力学和循环容量,以帮助实现 DOE 氢存储的最终目标。该项目旨在 1) 合成和表征新型改性镁硼化物,尤其是醚改性材料,与未改性的 MgB 2 相比,其氢循环动力学和氢存储容量有所改善;2) 确定新型改性硼化物的可逆氢化是否显示出显著改善的氢循环动力学和循环容量,达到实际可行的水平。这个由 HNEI 领导的项目是 UH(HNEI 和化学系)和 DOE-Hydrogen Materials 的合作成果