Ametek,威斯巴登 Aptiv,伍珀塔尔 BASF Coatings,明斯特 Block Materialprüfungsgesellschaft,柏林 BP,波鸿 Bruker Nano,柏林 联邦刑事警察局,威斯巴登 Carl von Ossietzky 奥尔登堡大学 Carl Zeiss Jena,上科亨 CleanControlling,埃明根-利普廷根 Conti Temic 微电子,因戈尔施塔特 CRB 分析服务,哈德格森 Currenta,勒沃库森 CVUA-RRW,克雷费尔德 D&I-Vallourec 研究中心,法国 Aulnoye-Aymeries DePuy Synthes,奥伯多夫 Dr. Graner & Partner,慕尼黑 EFI 服务,布达佩斯 EnBW Kernkraft,菲利普斯堡 Felix Schoeller,奥斯纳布吕克 苏黎世法医研究所 柏林研究协会 弗劳恩霍夫硅酸盐研究所 ISC,维尔茨堡 研究发展基金会 - FUNDEP,贝洛奥里藏特 汉诺威莱布尼茨大学 GSI,柏林 HARTING,埃斯珀尔坎普 Henkel,杜塞尔多夫 Heraeus Germany,哈瑙 Hirschmann Automotive,兰克韦尔 阿伦大学 普福尔茨海姆大学 IfW,埃森 INDIKATOR,伍珀塔尔 Infineon Technologies,慕尼黑工程协会 Meyer & Horn-Samodelkin 显微镜实验室,罗斯托克 德累斯顿腐蚀防护研究所 麦德林大都会技术学院,麦德林 集成微电子学,Biñan JOMESA 测量系统,Ismaning Kronos,勒沃库森 实验室 Dr.舍夫纳(Schäffner),索林根实验室克奈斯勒(Kneißler),布尔格伦根费尔德(Burglengenfeld)下萨克森州刑事警察局,汉诺威
微量金属对所有生物体的生长都至关重要。了解这些微量金属在新陈代谢中的作用对于维持生物体的稳定状态至关重要。此外,由于各种污染,人类还面临着各种有害重金属的不断接触。总的来说,这些方面导致了分析技术领域的研究和发展,这些技术可以帮助确定我们细胞中这些微量金属的含量。电感耦合等离子体质谱 (ICP-MS) 是一种分析技术,用于分析各种样品(包括生物样品)中的元素组成。近年来,单细胞 ICP-MS (scICP-MS) 技术已广泛应用于医学和生物领域,用于分析细菌、真菌、微生物、植物和哺乳动物中的单个活细胞。scICP-MS 的样品引入系统由传统的气动雾化器和总消耗喷雾室组成。气动雾化器将样品(细胞悬浮液)液体转化为雾气。虽然使用雾化器的传统 scICP-MS 分析对于酵母细胞的传输效率达到 10%,但由于哺乳动物细胞的脆弱性,它无法用于哺乳动物细胞。众所周知,化学固定可以增强哺乳动物细胞的强度,但它会极大地影响元素含量,导致分析不准确。因此,需要开发一种不会对哺乳动物细胞造成任何损害的样品引入系统。为此,来自日本的一组研究人员现已证明微滴发生器 (µDG) 作为样品引入系统的潜力,可用于高效定量分析哺乳动物细胞的元素。该团队由日本千叶大学药学研究生院的助理教授 Yu-ki Tanaka 以及 Hinano Katayama 女士、Risako Iida 女士和 Yasumitsu Ogra 教授组成,他们将 µDG 引入 ICP-MS 的样品引入系统,表明该系统能够准确地进行元素分析。他们的研究成果于 2024 年 12 月 2 日发表在《分析原子光谱杂志》第 40 卷上。Tanaka 博士进一步阐述道:“到目前为止,scICP-MS 已应用于细菌、真菌、植物细胞和红细胞。我们将 scICP-MS 技术的潜力扩展到哺乳动物培养细胞,开发了一种用于测量哺乳动物培养细胞中元素含量的强大分析技术。”在研究中,研究人员使用了两种样品引入系统进行颗粒和细胞样品分析。第一个是传统系统,包括同心玻璃雾化器和总消耗喷雾室。另一个系统包括插入制造的 T 形玻璃管道中的 µDG,玻璃管的一端连接全消耗雾化室,另一端连接ICP炬管。研究人员发现,使用µDG后,细胞运输效率大幅提高。此外,他们还估算了K562细胞(也称为人类慢性粒细胞白血病K562细胞)中的镁、铁、磷、硫和锌,发现µDG保持了细胞的原始结构,而传统系统通常会改变细胞的结构。因此,它非常适合单细胞元素分析,因为它不会影响细胞的结构,从而可以高效地检测细胞。“我们的
二手食用油(UCO)是一个伞术,涵盖了所有二手植物油,动物脂肪和加工油,这些植物油,食品加工行业,酒店,餐馆,家庭烹饪或煎炸以及屠宰场废物已使用。无论其起源如何,所有油的主要成分都是甘油酸酯,饱和或不饱和脂肪酸和甘油的酯,伴随着水,颗粒和加工食品的残基。UCO并未归类为危险物品。但是,如果将其处置不当,例如,通过废水的水槽,由于油或脂肪的凝固,排水系统可能会受到堵塞的负面影响。,如果用过的油与其他“固体废物”一起形成巨大的团块,即所谓的Fatbergs,则可能会发生更糟糕的情况。这通常会导致污水管完全阻塞。我们水域中有机污染的20%以上可以是
由于199日期的大流行,由于各个学校被迫意外地过渡到在线平台,因此远程学习在全国范围内普及。本案例研究探讨了护理人员在加利福尼亚州内陆帝国的公立小学期间,在远程学习期间,护理人员的数字素养自我效能感及其与学术参与的联系。通过半结构化访谈收集数据,该访谈是亲自或通过Zoom进行的开放式问题。这项研究表明,看护人的数字素养自我效能感并未对他们参与学生的远程学习的参与。无论看护人的计算机舒适性及其在远程学习中所面临的挑战如何,参与也有所增加。该研究的结果有助于向地区和学校人员提供有关如何向看护人提供清晰沟通的信息,并为整个远程学习中使用的数字工具提供培训。此外,它还指导地区如何抽出时间计划和创建结构可以使护理人员知道学校制定计划的舒适感。
高温(7000-8000 k)高电子密度(1014-1016cm)许多要素的电离程度可观程度的电离同时多元能力(超过70个要素(包括P和S)超过70个元素,包括P和S)低背景排放和相对较低的化学干扰高稳定性高稳定性准确性和准确性iestion for Optim-1 e元素(最佳量)。 宽线性动态范围(LDR)(四到六个数量级)。适用于耐火元件成本效益分析
评估了使用脉冲 keV 离子束在透射几何中对薄膜和准二维系统进行灵敏的多元素分析的飞行时间反冲检测的潜力。虽然飞行时间方法允许同时检测多种元素,而最大程度上不受反冲电荷状态的影响,但 keV 射弹能量可保证高反冲截面,从而在低剂量下获得高灵敏度。我们展示了该方法的能力,使用 22 Ne 和 40 Ar 作为射弹,穿过具有可选 LiF 涂层和单晶硅膜的薄碳箔,以用于不同的样品制备程序和晶体取向。使用大型位置灵敏探测器(0.13 sr),深度分辨率低于 6 nm,灵敏度低于 10 14
食品和饲料市场的全球化以及相关的生产和回收过程,要求对产品特征的准确和可靠的控制以保护商业价值,但主要是为了保护消费者健康和制造商的声誉。闪光智能元素分析仪(图1)在一个单个系统中,在固体和液体样品的高浓度下实现定量元素测定,适应您的需求并涵盖食物周期中的广泛分析。执行的元素分析基于燃烧方法(DUMA)方法,允许一种简单,快速,成本效益和环保的方式来分析样品。分析仪毫不费力地应对现代实验室要求,例如准确性,日常可重复性和高样本吞吐量。
共享和支持性的领导价值观和愿景集体学习和应用程序共享个人实践