光子结构和时间晶体,其中将时间合并为光线操纵的额外自由度,因此需要开发分析和半分析工具。但是,此类工具当前仅限于特定的配置,从而使几种无法探索的物理现象类似于光子时间晶体。在这种交流中,使用耦合波理论方法,我们在时间周期性的双向介质中揭示了发生的光传播现象,其介电性,渗透性和手性参数是定期时间的功能。与它们的静态对应物相反,我们证明了被考虑的动态媒介夫妇仅共同管理反向传播波。在非恒定阻抗的情况下,我们证明在布里鲁因图中形成了两个一阶动量差距,从而导致参数放大,分别具有不同的扩增因子和相应的右手和左手模式的相应力量。手性的存在在控制灯波信号中通过控制共振的中心,相应的带宽和扩增因子在每种模式下以独特的方式来操纵灯波信号。对于培养基的有限“时间单板”,我们通过分析得出散射系数作为时间和动量的函数,讨论了光学旋转的极端值如何访问手学诱导的负面折射状态的时间类似物。最后,我们证明了椭圆极化可能会改变场取向的机制,而电场在动量间隙中传播,从而同时展示了参数放大。
疾病本质上无处不在,在光子学中已广泛探索,以了解光扩散和定位的基本原理,以及在功能谐振器和随机激光器中的应用。最近,对拓扑光子学中疾病的研究导致了拓扑安德森绝缘子的实现,其特征是出乎意料的疾病引起的相变。然而,到目前为止,观察到的光子拓扑结构剂仅限于时间反向对称性破坏系统。在这里,我们提出并实现了光子量子旋转霍尔拓扑拓扑拓制孔,而无需打破时间反转对称性。通过理论有效的狄拉克·哈密顿(Dirac Hamiltonian),批量传播的数值分析以及对批量和边缘传输的实验检查,全面证实了疾病诱导的拓扑相变。我们提供了令人信服的证据,证明了螺旋边缘模式的单向传播和稳健的运输,这是非平凡的时间反转不变拓扑的关键特征。此外,我们展示了无序诱导的束转向,突出了障碍作为操纵无磁性系统中光传播的新自由度的潜力。我们的工作不仅为观察独特的拓扑光子相铺平了道路,而且还通过疾病的利用来提出潜在的设备应用。
已出版期刊(选定的):Nature、Nature Materials(4)、JACS、PRL、Physical Review B(6)、Nano Letters(2)、ACS Nano、ACS Energy Letters、ACS Sensor、Advanced Materials(3)、Advanced Functional Materials、Analytical Chemistry(4)、Applied Physics Letters(10)、ACS Applied Materials and Interfaces(7)、Optics Express(4)、Applied Optics(4) 文章数量:+100 篇高影响力期刊文章 专利:8 项(3 项已获得授权) 奖项: -亚历山大·冯·洪堡、弗里德里希·威廉·贝塞尔研究奖 -土耳其科学院青年科学家奖 -土耳其科学技术研究委员会奖 -OSA 新焦点学生奖 资助: ERC 启动(整合)资助(来自土耳其的第一个 ERC 资助) ERC 概念验证 13 项学术和行业资助(>2000 万美元) 教学评估:学生评估分数:4.4/5.0(超过 33 门课程) 学生指导:30 博士/硕士论文(45 次邀请) 引用:~8257,h 指数:47(学者) 重大科学贡献: - 光纤内多材料设备和传感器 - 一种新的自上而下的纳米制造技术 - 基于光纤的数字光子鼻/传感器 - 一种新的光传播机制 目前的研究课题: - 纳米级材料和传感器 - 自上而下的纳米制造工具包 - 生物相容性电活性纳米材料和传感器 - 用于 X 射线传感和成像的纳米材料 - 钙钛矿光子学 - 用于增材制造的纳米结构光纤 - 慢光纳米结构 - 用于光遗传学的多功能光纤探针
定量相成像(QPI)是一种无标签的计算成像技术,用于各个领域,包括生物学和医学研究。现代QPI系统通常依靠使用迭代算法进行相位检索和图像重建的数字处理。在这里,我们报告了一个衍生光网络,该衍射光网训练,该网络训练了将随机扩散器后面的输入对象的相位信息转换为输出平面处的强度变化,从光学上执行相位恢复和对相位对象的定量成像,完全由未知的随机相位扩散器完全隐藏。此QPI衍射网络由连续的衍射层组成,轴向跨度延伸约70,其中照明波长;与现有的数字图像重建和相位检索方法不同,它形成了一个全光处理器,该处理器不需要超越照明光束的外部功率才能以光传播的速度完成其QPI重建。这个全光衍射的处理器可以通过随机的,未知的扩散器提供低功率,高框架速率和紧凑型替代方案,用于对相对的定量成像,并且可以在电磁频谱的不同部分进行生物医学成像和传感的各种应用。可以将所提供的QPI衍射设计集成到标准CCD/CMOS基于基于CMOS的图像传感器的活动区域,以将现有的光学显微镜转换为衍射QPI显微镜,在芯片上通过无线衍射层内的光衍射进行相位恢复和图像重建。
测量方法。具体而言,可以根据压力传感器(压力传感器)获取的压力历史来计算爆震波的传播速度,或者记录自发光现象的高速视频以定位燃烧现象。除此之外,还需要获得RDRE内部爆震波本身的形状、燃料/氧化剂气体混合物的干涉模式等信息,这些信息无法使用常规方法确定,但却极其重要RDRE 的实际应用需要定量可视化测量。被称为纹影法和阴影图法的方法广泛用于可视化和测量流动,但为了获得定量信息,更适合采用可以测量干涉条纹的干涉测量法。在一般的干涉仪方法中,将从作为光源的激光器发射的激光束用作“物光束”(获取有关目标现象的信息)和“参考光束”(穿过目标现象并充当目标现象的信息)。产生干涉条纹的参考)。物体光传播与物体光相同的光路长度。此外,只有物光被引导到测量部分,参考光不允许出现任何现象,而是在成像装置之前重新集成为单光束,并且两束激光束处于同一位置。光路,产生干涉条纹并记录在设备上。如上所述,干涉仪法的光学系统通常比较复杂。另一方面,对于本研究中的测量目标RDRE来说,以双筒内传播的爆震波为测量目标,RDRE燃烧实验场地是一个开放空间,没有实验的辅助设备。考虑到该区域周围物体较多,且没有足够的空间安装光学系统,因此确定使用一般干涉仪进行视觉测量会很困难。 因此,在本研究中,我们确定“点衍射干涉仪”是合适的,它被归类为干涉测量方法中的“共光路干涉仪”,并且在成像装置之前分离物光束和参考光束。针对发动机燃烧实验,我们设计并制作了适用的点衍射干涉仪光学系统,并将其应用于RDRE燃烧实验。实现了以下目标。
这次演讲原本是为了 1981 年在 Endicott House 举办的物理与计算会议 40 周年而准备的,所以我认为应该从 1981 年开始。当时我是加州理工学院的一名大四学生,费曼准备在 Endicott House 会议 [13] 上发表主题演讲的时候我肯定在场,那是人们第一次认真思考量子计算。我在加州理工学院的时候并没有听说过这个,事实上,直到很晚我才看到费曼的论文。但我想提一下我在加州理工学院听到的他的另一场演讲,那场演讲表明他当时正在思考物理学基础问题。费曼的演讲是关于负概率的。在演讲开始时,他解释说他一直在研究贝尔定理,该定理表明量子物理不可能是局部现实的隐变量理论。这意味着,任何对量子力学的解释要么需要非局域性,要么需要非现实性(这里的局域性意味着信息不能比光传播得更快,而现实性意味着你可以测量的东西对应于粒子的具体属性)。费曼解释说,他所做的就是仔细研究证明贝尔定理的假设,看看是否存在任何隐藏的假设。事实上,他找到了一个——假设所有概率都在 0 到 1 之间。他推断,如果概率可以小于 0 或大于 1,那么也许有办法解决 EPR 悖论,但当你计算任何你可以实际观察到的概率时,计算会将这些不切实际的概率相加,得到一个介于 0 和 1 之间的结果。这并不像乍一听那么离谱——谐振子的维格纳函数就是这样表现的,费曼对此进行了评论。他继续展示了他关于负概率的一些发现;我不太记得这部分内容了。早在 1964 年的一系列讲座中 [12],费曼就说过
光学干扰过滤器用于现代光学元件的大多数区域,因为它们允许修改高精度光学系统中光传播和运输的参数:反射,传输,吸收,吸收,相位和极化,脉冲持续时间,脉冲持续时间等[1-4]。因此,这些光学特性是由波长,入射角和极化的函数控制的。例如,今天,我们合成和制造了许多光学功能,例如抗反射器,极化器和束分式拆分器,二分色过滤器,镜像和窄带过滤器,多PIC过滤器,高和低通滤波器,高通滤波器,逆滤波器,逆滤波器,chir滤波器和其他滤镜。合成(或设计或反问题)技术从数学和算法的角度取得了很大发展,到现在可以将任何任意光学(强度)函数与多层合构成的点。同时,制造技术已经发生了很大的发展,因此现在可以生产几百个薄层不同材料的过滤器,每一层的厚度从几nm到几百nm不等。某些问题自然保持开放,例如(除其他)相位和宽带特性,大块和微材料以及非光学特性。用于旗舰应用,例如引力波[5,6]或陀螺仪的镜子,而空间光学器件,当前的挑战是打破PPM屏障,即确保通过吸收和散射造成的总损失少于入射通量的100万。尽管假想索引(几个10-6)和多层组件中的低粗糙度(nm的一部分),但尚未达到这种艺术状态。应注意,这些损失也与组件的激光通量抗性直接相关,具体取决于照明状态[7]。在最低的光学损失的最后背景下,这项工作已经进行了。在所需的精度水平上,我们需要分析吸收机制的细节,考虑到这种吸收被转移到热传导,对流和辐射的过程中。对这种光诱导的热辐射的分析[8-10]至关重要:首先,它使我们能够追踪非常低的吸收水平(目前难以测量10-6以下),这可以允许确定
相对于时间边界之前的波浪的频率。但是,最近的Researchontime-varyingmedia探索了更复杂的超材料时间边界提供的许多机会。例如,各向异性的时间边界起作用“反棱镜” [9],可以重定向预测波的能量[10],并且表现出无产生后向波的颞brewster角度[11,12]。频率分散时间边界可实现多频产生[13,14],而非偏置时间边界表现出法拉第旋转效应[15]。将两个或多个边界组合到时间多层系统中提供了进一步的设计灵活性,包括控制向后波及其光谱响应[16-19]。此外,当大量的时间边界是合并的时,thesystemcanbeeffectivementive deScriveTialDasaphosedasa photonic时间晶体[20-22]或时空超材料[23]允许获取新形式的光传播形式。时间边界对于量子光学的领域也很感兴趣,在该领域中,它们已被证明会导致挤压转换[24 - 26]。它们还会修改量子发射器[27]和游离电子[28]的光发射。与经典案例类似,预计超材料提供的设计灵活性将为量子变化媒体的研究开辟新的途径。随着这一动机,在这项工作中,我们提出了各向异性时间边界如何在真空放大效果的角度特性上提供控制(见图1)。真空放大效应[29,30]由电磁真空状态产生的光子产生,这是由量子真空波动和动态边界之间的相互作用产生的。如图1所示,各向异性的时间边界允许控制生成的光子的角度分布,包括抑制沿特定方向的光子抑制光子的生产,并贯穿着光子的光子发射,同时将它们全部浓缩到单个方向上,并产生了频率和生成的快速词,并产生了敏感的快速动物量,并产生了敏感的敏化剂量,并产生了敏感的敏捷量。共鸣。
1。电荷保护定律。库仑定律。电场强度。叠加原理。连续电荷分布的模型。均匀带电环和灯丝的电场强度。2。电场强度向量的通量。高斯定理用于静电场强度矢量。将高斯定理应用于点充电和平面。3。电场电位。点充电的电势。静电场载体与电势之间的关系。泊松方程。均匀带电的球体的潜力。4。电偶极子。点偶极子的场强和静电电势。外部电场中的电偶极子(力,扭矩,势能)。5。电容的概念。具有不同几何配置的电容器的示例。平行板电容器电容的推导。6。磁场B矢量。带有电流的生物萨瓦特 - 拉普拉斯定律的导体的磁场。具有直流电流的有限长度直导体的磁场。7。磁场矢量的循环定理。带有直流电的环中心的磁场。在长螺线管中的磁场表达。电感。8。电动力。DC电路中的功率。9。广义欧姆定律(差异和整体形式)。Joule-Lenz Law(差异和积分形式)。电磁场。麦克斯韦的方程式以整体和差异形式,其物理含义。不同单位系统中的基本电磁量和定律:SI,CGS和Gaussian。10。来自麦克斯韦方程的电磁平面波方程的推导。电磁平面波的横向性质,电场和磁场之间的关系,电场和磁场的相位振荡。11。平面谐波的极化状态。椭圆形,圆形和线性极化。偏振和自然光,MALUS定律,极化程度。12。光的衍射。 huygens-fresner原理:定义和数学表述。 菲涅耳螺旋,菲涅耳区板。 13。 通过圆形孔和圆形屏幕(菲涅耳区,菲涅耳螺旋)衍射14。 在不透明屏幕的直线边缘处的衍射。 cornu螺旋。 15。 fraunhofer衍射。 衍射模式的属性。 16。 光的干扰。 干扰形成,基本关系和干扰场的特征的条件。 干扰条纹的类型。 17。 电磁波的折射。 Snell定律的推导。 总内部反射。 18。 菲涅尔公式。 19。 20。光的衍射。huygens-fresner原理:定义和数学表述。菲涅耳螺旋,菲涅耳区板。13。通过圆形孔和圆形屏幕(菲涅耳区,菲涅耳螺旋)衍射14。在不透明屏幕的直线边缘处的衍射。cornu螺旋。15。fraunhofer衍射。衍射模式的属性。16。光的干扰。干扰形成,基本关系和干扰场的特征的条件。干扰条纹的类型。17。电磁波的折射。Snell定律的推导。总内部反射。18。菲涅尔公式。19。20。在反射和折射过程中电磁波极化。电磁表面波。使用菲雷斯公式的应用:布鲁斯特定律。在两个介质边界处电磁波的相位关系。光的分散。频率和空间分散。频率分散的电子理论。频率频率依赖性。在分散介质中电磁波包的传播。组速度。瑞利公式。21。培养基的非线性极化。 非线性光学现象(频率的谐波产生,加法和减法,自我关注,刺激散射)。 22。 电磁波在介电波导中传播的特征。 23。 光学平面波导。 介绍波导模式。 24。 光纤。 纤维结构。 光纤中的光传播。 25。 激光的分类(类型)。 各种类型激光器的特征。 激光辐射的主要特征及其评估方法。 26。 半导体中的吸收和光辐射的产生。 发光二极管。 最简单的半导体激光器的设计和操作。 27。 光子晶体。 使用光子晶体用于信息传输,存储和处理。 光子晶体中带结构的形成。培养基的非线性极化。非线性光学现象(频率的谐波产生,加法和减法,自我关注,刺激散射)。22。电磁波在介电波导中传播的特征。23。光学平面波导。介绍波导模式。24。光纤。纤维结构。光纤中的光传播。25。激光的分类(类型)。各种类型激光器的特征。激光辐射的主要特征及其评估方法。26。半导体中的吸收和光辐射的产生。发光二极管。最简单的半导体激光器的设计和操作。27。光子晶体。使用光子晶体用于信息传输,存储和处理。光子晶体中带结构的形成。
AR辐射偷偷摸摸的预览连续浸润,两光子聚合的3D光子晶体用于中等光谱镜应用,2024年3月15日,2024年3月15日,也称为PHCS,是空间有组织的结构,具有与光波长相等的光学晶格参数。自发现以来,PHC一直在电信行业中找到应用,包括MID-IR光谱应用,电子门和光学计算和ICS的偏振滤波器以及压力强力传感。PHC还可以实现设备小型化(包括微流体),生物传感和化学感应。PHC的唯一几何特性和折射率可以允许或限制在特定频率范围内电磁波的传播。频率的受限范围称为光子带隙(PBG),其存在使结构可以减慢并塑造光。将其应用于气光谱应用中的传感器时,较慢的光会增加光和目标气体之间的相互作用时间,从而增强了灵敏度。PBG高度依赖于PHC和背景材料(通常是空气)之间的折射率(RI)对比度。当存在较差的RI对比条件时,PHC的应用受到限制。在这份新报告中,伊利诺伊大学的伊利诺伊大学科学家和Argonne National Lab通过将内部光学表面覆盖具有ALD沉积的高折射率ZnO的内部光学表面,从而提高了高级三维(3D)PHC的RI,从而使未来的改进能够改进,从而实现了敏感性,准确性,基于pHC的限制。,无论极化如何,带有频带结构中禁光传播频率的完整PBG区域都使三维(3D)PHC在光谱应用中优先于2D和1D PHC,但证明更难制造。唯一设计用于支持顺序浸润合成(SIS)过程,Arradiance的Gemstar TM ALD系统比常规ALD降低了反应温度,更高的反应压力和更长的反应时间。这使前体气体能够在3D聚合物基质内浸润并在深处反应,从而确保没有降解,材料损失或脱气。