Chapter 1 ................................................................................................................................... 9
氧合光合作用是地球上几乎所有生物量生产的原因,并且可能是建立富含多细胞寿命的复杂生物圈的先决条件。地球上的生命已经演变为在广泛的光线环境中进行光合作用,但具有一个常见的基本结构,该建筑的轻度捕获天线系统与光化学反应中心相连。使用轻度收获的广义热力学模型,再加上进化算法,我们预测了可能根据不同强度和光谱曲线而发展的光收集结构的类型。我们定性地重现了多种类型的氧光自养生体的天线系统的色素组成,线性吸收曲线和结构拓扑,并表明,在各种光明环境中,相同的物理原理在不同的物理原理中发展。最后,我们将模型应用于在类似地球的系外行星上存在的代表性光环境,预测氧气和无氧光合作用都可以在低质量恒星周围发展,尽管后者似乎在最酷的M-Dwarfs周围可以更好地工作。我们将其视为迈出基本生物学过程的一般进化模型的有趣第一步,并证明了假设生物学的本质超出地球具有意义。
将阳光转化为化学能,即光合作用,是地球上生命的主要能源。基于从电子到细胞量表的多尺度计算模型的可视化形式,以fulldome show earl the planet earth的诞生的摘录形式提出。这种可访问的视觉叙述显示了外行观众,包括孩子,如何通过一系列蛋白质捕获,转换和存储阳光的能量,从而使活细胞捕获。可视化是生物物理学家,可视化科学家和艺术家之间多年合作的结果,而这反过来又基于在结构和功能建模上进行了长达十年的实验计算合作,从而产生了对细菌性生物概念性细菌性生物概要细胞器的原子细节描述。该项目需要进行的软件进步导致了大量的性能和功能进步,包括硬件加速的电影射线跟踪和实例可视化,以进行有效的单元格式建模。所描述的能量转换步骤具有从电子到单元水平的功能整合,涵盖了近12个数量级的时间尺度。此原子细节描述独特地使人对人类最早的故事之一的现代重述 - 光与生命之间的相互作用。
“现在的商业生产的PHA是如今的高能源密集型,并且在很大程度上依赖有机原材料和清洁水,这与欧盟的目标冲突了循环,可持续的经济。当前的生产过程远离零排放中性碳策略,” Promicon政策简介的作者解释了。该方法发表在《研究思想和结果》杂志上。
a)茂密的针叶森林(使用的虚拟森林景观场景:A中: e)热带森林(使用的虚拟森林景观场景:C中的C)f)f)稀疏森林(使用的虚拟森林景观场景:图2中的e)g)g)g)g)paddy领域的lut(使用的虚拟森林景观场景:图2中的f)
碳捕获和生化存储是光合产量和生产力的主要驱动因素。为了阐明控制碳分配的机制,我们使用微藻作为简化的植物模型设计了一种光合光响应测试系统,用于遗传和代谢碳同化跟踪。在相同的picochlorum celeri物种的两个变体中,TG1和TG2阐明了代谢瓶颈部的两个变体之间的高光响应性光生理学和碳利用动力学的系统生物学映射,并使用机构13 C-Elfooxomics进行了中间体的传输速率。同时全局基因表达动力学显示,有73%的注释基因在一小时内响应,阐明了与植物中CCA1/LHY时钟基因密切相关的单数,二元响应的转录因子,TG2中表达有显着变化。表达TG2 CCA1/LHY基因的转基因P. celeri TG1细胞显示出15%的生长速率和25%的储存碳水化合物含量增加,从而支持单个转录因子的协调调节功能。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2021年11月4日发布。 https://doi.org/10.1101/2021.11.11.04.467239 doi:Biorxiv Preprint
光合作用是维持植物和人类生命的关键过程。提高农作物的光合能力是增加其产量的一种有吸引力的方法。虽然光合作用的核心机制在 C3 植物中高度保守,但这些机制非常灵活,允许光合特性存在相当大的多样性。这种多样性之一是在高辐照度下保持较高的光合光能利用效率,正如在少数特殊的 C3 物种中发现的那样。十字花科的一种植物 Hirschfeldia incana 就是这样一种特殊的物种,由于它易于生长,因此是研究这种性状的遗传和生理基础的绝佳模型。在这里,我们展示了 H. incana 的参考基因组,并证实了其较高的光合光能利用效率。尽管 H. incana 是十字花科中迄今为止光合速率最高的,但与其密切相关的 Brassica rapa 和 Brassica nigra 的光饱和同化率也很高。H. incana 基因组已通过大规模染色体重排、物种特异性转座子活性和重复基因的差异保留与 B. rapa 和 B. nigra 基因组广泛分化。H. incana 、B. rapa 和 B. nigra 中参与光合作用和/或光保护的重复基因在拷贝数和基因表达之间表现出正相关,这为这些物种高光合效率的潜在机制提供了线索。我们的研究表明,H. incana 基因组是研究高光合光能利用效率的进化和提高作物物种光合速率的宝贵资源。
摘要:水产养殖产量处于创纪录的水平,估计在未来几年中会增加。但是,这种产量可能会受到病毒,细菌和寄生虫产生的传染病的负面影响,从而导致鱼类死亡率和经济损失。抗菌肽(AMP)是很小的植物,可能有望替代抗生素,因为它们是动物对各种病原体的第一道防线,并且没有负面影响。它们还显示了其他抗氧化剂或免疫调节功能等其他功能,这使它们成为水产养殖的强大替代品。此外,AMP在天然来源中高度可用,并且已经用于牲畜农业和食品行业。光合海洋生物可以在各种环境条件下以及在极具竞争性的环境下生存,这要归功于它们的柔性代谢。出于这个原因,这些生物代表了一种强大的生物活性分子来源,即包括AMP在内的营养素和药物。因此,在这项研究中,我们回顾了来自光合海洋生物体的AMP的当前知识,并分析了它们是否适合在水产养殖中使用。
摘要:叶绿体是通过蓝藻类共生体与宿主内共生进化而来的光合细胞器。许多研究试图分离完整的叶绿体来分析其形态特征和光合活性。尽管一些研究将分离的叶绿体引入不同物种的细胞中,但其光合活性尚未得到证实。在本研究中,我们从原始红藻 Cyanidioschyzon merolae 中分离了具有光合活性的叶绿体,并通过共培养将其整合到培养的哺乳动物细胞中。整合的叶绿体保留了其细胞内囊体的结构,并保持在细胞质中,被细胞核附近的线粒体包围。此外,整合的叶绿体在整合后至少 2 天内在培养的哺乳动物细胞中保持光系统 II 的电子传递活性。我们的自上而下的基于合成生物学的方法可以作为创造人工光合动物细胞的基础。