摘要:考虑到令人担忧的水资源短缺问题,必须采用更高效的废水处理技术。废水可以通过传统的生物过程处理,去除病原体、颗粒和可溶性有机化合物以及其他成分。然而,处理厂的二级废水可能仍然含有有毒元素或高浓度的无机营养物(主要是氮和磷),这使得光合微生物在水体中生长,导致水体富营养化。在这种情况下,在污水处理产生的二级废水中培养光合微生物可以去除这些废水中的营养物,降低水体富营养化的可能性。此外,在这种三级废水处理中产生的微藻生物质可以通过不同的方法收获,并有可能用于不同的应用,例如肥料和生物燃料。
解释:光合作用是植物、藻类和一些细菌将阳光中的能量以及二氧化碳和水转化为葡萄糖和氧气的过程。光合作用的主要目的是产生葡萄糖,然后生物体可以将其用作能量来源。其他选择并非光合作用的主要目的。
叶绿素 (Chl) 的通用名称是一类环状四吡咯,是自然界中最丰富的色素,甚至从外太空也能看到。这种色素在光合作用中起着关键作用。光合作用是一种代谢过程,通过将二氧化碳固定为碳水化合物,将与太阳辐射相关的能量转化为化学能,为整个生物圈提供能量。[1] 叶绿素参与光合作用的三大反应,即 i) 吸收光辐射,充当光收集复合体中的天线,ii) 将激发能转移到所谓的反应中心蛋白,iii) 完成光合膜上的光诱导初级电荷分离。真核生物和细菌中都有光合生物,它们的光合器官差异很大(图 1)。[2]
通过使用基因组编辑和稳定植物转化技术,开发将高粱基因与表型联系起来的基因组水平知识库以实现生物能源目标,对于理解基本生理功能和作物改良至关重要。我们与参与该项目的各个实验室一起贡献中央枢纽能力,以创建、测试和培育转基因和基因组编辑植物。我们已经建立了可靠的协议,用于通过农杆菌介导将实验性遗传构建体引入高粱 cv BTx430,并合作生成该项目正在进行的研究所需的可行转基因。这些实验包括:; (1) 用于敲低的高粱 RNAi 构建体,例如电压门控氯离子通道蛋白、α碳酸酐酶 7 (CA) 和 9-顺式环氧胡萝卜素双加氧酶 4 以及 myb 结构域蛋白 60; (2) 构建体用于测试磷酸烯醇丙酮酸羧化酶 (PEPC) 启动子表达、CA 过表达和具有改变动力学的 PEPC 的保真度;(3) 旨在测试一系列增加的叶肉 CA 活性的 CA 过表达的其他版本;(4) Ta Cas 9、dTa Cas9 和 dCas9 转录激活因子用于改进编辑,以及;(5) 构建体用于评估转基因过程的改进,旨在增加转化频率并缩短 T1 种子的时间。这些品系目前处于转基因过程的不同阶段。使用形态发生调节剂介导的转化 (MRMT) 的最新发展是实现快速转化和基因组编辑的突破。我们报告了一种使用 MMRT 技术的改进的快速转化方法的开发,该方法有可能增加我们的项目的吞吐量并缩短时间。与 Voytas 实验室合作,我们评估了 MRMT 载体的公共版本。 Voytas 实验室还在测试递送基因组编辑试剂的新方法,特别是使用 RNA 病毒载体通过感染递送 gRNA。通过感染进行可遗传基因编辑已在多个双子叶植物中实现,我们正在努力在狗尾草和高粱中实施该技术。
与温室或田野中的常规农作物种植相比,具有人造光的植物工厂(PFAL)在高效利用可用于耕种的空间,能源和资源方面具有优势。然而,据报道,很少有关于改善PFAL空间使用功效(SUE)在植物大豆毛豆生产中的空间使用功效(SUE)的研究。因此,开发一种以最小空间和能源需求的高生产率的环境控制方法是高优先级。这项研究的目的是(1)确定最佳的光合光子通量密度(PPFD)和光质量,以增强在营养生长阶段的雌芳族的SUE,并且(2)检查PPFD,光质量的影响,光质量及其对植物阶段的Edamame植物生长的相互作用。sue定义为在生长期间每立方体培养的农作物生物量。,我们检查了三种PPFD处理(300、500和700μmolM -2 S -1),共有三种色温LED灯(3,000、5,000和6,500 K),总共进行了九种处理。结果表明,在相同的轻质处理下,较高的PPFD导致所有器官的新鲜和干重,较高的茎长和较低的特定叶片面积。在同一PPFD处理下,蓝色(400–499 nm)与红色(600–699 nm)光子通量密度的高比例增加了植物的高度,但降低了预计的叶片面积。与300μmolM -2 s -1相比,分别在700μmolm -2 s -1中分别以3,000、5,000和6,500 K的形式增加了213、163和92%,分别为3,000、5,000和6,500 K。与3,000 K处理相比,在5,000和6,500 K处理中,SUE在700μmolM -2 S - 1中分别增加了34和23%。总而言之,在PFAL中,在营养生长阶段增加了700μmolm -2 s -1 ppfd和5,000 K色温的组合是增加毛虫的起诉。
氢被认为是向可持续和零碳经济过渡的主要推动者之一。从可再生能源生产时,氢可以用作清洁且无碳的能源载体,并提高各种工业过程的可持续性。光生物学生产被认为是最有前途的技术之一,避免了对可再生电力和稀土金属元素的需求,由于当前的同时电气化和脱碳目标,其需求大大增加。光生物学生产采用光合微生物来收集太阳能并将水分成分子氧和氢气,从而解锁了太阳能储能的长期储存目标。然而,光生物学氢的产生已受到几个局限性的限制。本综述旨在讨论有关氢化酶驱动的光生物学生产的当前最新技术。重点放在工程策略上,以表达改进,非本地,氢化酶或光合作用的重新设计,以及它们的组合是发展可行的大型氢绿细胞工厂的最有希望的途径之一。在这里,我们提供了当前知识和技术差距的概述,这些差距遏制了光生物学氢化酶驱动的氢产生的发展,并总结了有关非本性氢化酶在蓝细菌和绿色藻类中表达的最新进展和未来前景,并强调了[FEFE]氢化酶。
简单摘要:进行了实验,以研究枯草芽孢杆菌对不同钾水平下黄瓜幼苗的生长和光合系统的影响。用“ Xinjin 4”作为测试材料进行了锅实验,并进行了两因素实验。这两个因素是不同浓度的钾离子和枯草芽孢杆菌治疗。研究了不同处理对黄瓜幼苗生长,光合特征,根形态和叶绿素荧光参数的影响。结果表明,当钾离子的浓度为0.2 g/锅时,枯草芽孢杆菌对黄瓜幼苗生长和叶片光合作用的影响最大。这项研究为进一步利用枯草芽孢杆菌制造微生物肥料并提高了黄瓜的营养吸收效率以促进农业的发展。
HairMetrix 毛发光合图模式除了测量终末/毳毛数量外,还测量生长期/休止期比率和生长率,以便更深入地了解脱发情况。毛发光合图评估依赖于修剪目标区域(8mm x 20mm)并在 1 至 3 天后重新成像。
2024 2024 年材料研究学会春季会议。基于光合细菌的生物混合材料用于能源和传感。西雅图(美国)——受邀演讲。2023 圣保罗大学(巴西)。半人工光合作用的生物混合界面:从仿生聚合物到纳米材料。圣保罗化学研究所(巴西)——受邀研讨会。2022 智利圣地亚哥大学(智利)。用于半人工光合作用的细菌/电极界面。智利圣地亚哥化学和生物学学院(智利)——全体会议讲座。2022 克雷塔罗自治大学(墨西哥)。从基于光合细菌的光电极到生物传感器。在线——受邀研讨会。 2022 CIMTEC 2022 第九届新材料论坛。细菌光合作用的电化学领域。佩鲁贾(意大利)——受邀演讲。2022 意大利纳米技术研究所国家研究委员会。生物混合电化学系统中的细菌-电极相互作用。线上——受邀研讨会。2021 第 240 届电化学学会会议。针对水质监测生物电化学系统的可持续性。虚拟会议——受邀演讲。2021 第 19 届欧洲光生物学学会大会。用于环境监测的生物混合系统中的光合实体。虚拟会议——受邀演讲。2021 北卡罗来纳州立大学(美国)。半人工光合作用:了解生物混合系统中的细胞外电子转移。线上——受邀研讨会。 2020 加利福尼亚大学欧文分校(美国)。半人工光合作用:从理解到人工调节生物体内的光激发电子收集。在线 - 受邀研讨会。
光合作用:历史背景;光合作用的位置;光合色素;光合作用机理 - 光依赖阶段(光反应),光系统;循环和非环状光磷酸化;光独立(生物合成)阶段 - 加尔文(C3)循环和孵化与松弛(C4)循环;影响光合作用的因素;光呼吸。植物生长和发育:植物生长的特征;生长,增长率,生长曲线的阶段;生长条件;分化,去分化和重新分化。植物细胞中发育过程的顺序;植物生长调节剂;生长素,gibberellins,cytokinins,乙烯和脱支酸的发现和生理作用。