摘要:光学微/纳米图案的高质量制造的可用性为基于光学机械(OM)声音和光的相互作用而开发的可扩展电路和设备的道路铺平了道路。在这项贡献中,我们提出了一项有关OM腔的新研究,可以使其与紧密整合的波导对其耦合进行精确控制,这是增强模式激发和波浪能陷入诱因的必要条件,为波浪指导,滤波,滤波,填料,结合和传感打开了许多潜在应用的可能性。此外,可以避免对笨重的实验设置和/或光纤维耦合/激发的需求。同时,优化了在腔体中共鸣的机械和光学模式的质量因素,以及它们的OM耦合系数:两种激发的高度结合是实现其声音(AO)相互作用的先决条件。为此,腔体的横向大小已被抛物面,具有将腔分离的额外好处和远离耦合区域的集成波导。有限元方法已用于执行全波分析,并提供了有关正确描述光学散射和辐射所需的模拟设置的准确讨论。
在此期间,实用工作通常在物理课程中使用,以使学生参与积极的学习和观察过程[3]。量子光学实验的问题是,由于它们的复杂性很高,对光学调整的敏感性,它们很难在教室中部署,并且由于使用电光系统和激光器而可能构成安全问题。它们通常非常昂贵,并在远离教室的“研究”环境中部署。在实验会话中,学生的操作通常仅限于对光学组装的选定部分进行微调以减轻任务的复杂性。实验的一般图片通常会丢失,因为学生仅尝试整个现象的一小部分。此外,在实际安装中,电源电缆和信号的多样性以及所有混乱视觉空间的测量/控制仪器都会破坏对要掌握的基本概念的整体理解。
联合国教科文组织宣布庆祝量子科学和技术的2025年。我们很高兴发布此问题,编辑委员会已经开始了很长时间的准备工作,以便完全发表声明。法国在量子科学方面拥有丰富而丰富的经验,并迅速将自己强加于该领域的最前沿的国家。随着时间的流逝,重要的努力在这个战略部门中进行了,他们今天有了成果:研究和企业的结构得到了加强,网络结构化,部署了合适的培训,并出现了COM -MUNS实验室。我们想要通过这些页面突出显示的所有dy-sig。我们在这个关于量子通信的第一个特殊文件中揭示了照片的核心角色。量子密钥的纠缠和分布是变化范围的核心,尤其是保证通信的安全性。这意味着从量子和检测到量子所吸收的光子到通信网络上的密钥的分布,都面临整个链中的主要挑战。您可以看到,这些领域的专家动员了参与此问题。 我热烈感谢他们您可以看到,这些领域的专家动员了参与此问题。我热烈感谢他们
摘要:测量高度分散材料的光学特性是一个挑战,因为它可能与采集系统中像素的白色或过度饱和有关。我们使用了一种空间分辨的方法,并将非线性信任区域算法调整为拟合法雷尔扩散理论模型。我们建立了一种反转方法,通过单个反射测量值估算材料的两种光学特性:吸收和减少的散射系数。我们通过比较在牛奶样品上获得的结果,证明了我们方法的有效性,并通过良好的拟合和与脂肪含量的线性相关性的检索,该脂肪含量由r 2得分超过0.94,p值低。检索的吸收系数的值在1×10 - 3和8×10-3 mm -1之间变化,而从我们的方法获得的散射系数的值则在3至8 mm -1
摘要:氧化锆(ZRO 2)是一种良好且有前途的材料,由于其出色的化学和物理特性。在用于腐蚀保护层,磨损和氧化的涂料中,在光学应用(镜像,滤波器)中用于装饰组件,用于反伪造的解决方案和医疗应用。ZRO 2可以使用不同的沉积方法(例如物理蒸气沉积(PVD)或化学蒸气沉积(CVD))作为薄膜获得。这些技术是掌握的,但由于固有特性(高熔点,机械和耐化学性),它们不允许对这些涂层进行微纳米结构。本文描述的一种替代方法是Sol-Gel方法,该方法允许使用光学或纳米图形印刷术的无物理或化学蚀刻过程的ZRO 2层进行直接微纳米结构。在本文中,作者提出了一种完整且合适的ZRO 2 SOL-GEL方法,允许通过光学或纳米IMPRINT光刻来实现复杂的微纳米结构,以实现不同性质和形状的基材(尤其是非平面和箔材料的底物)。通过掩盖,胶体光刻和玻璃和塑料底物以及平面和弯曲的底物,通过掩盖,胶体光刻和纳米图光刻来呈现ZRO 2 Sol-Gel的合成以及微纳米结构过程。
光学干扰过滤器用于现代光学元件的大多数区域,因为它们允许修改高精度光学系统中光传播和运输的参数:反射,传输,吸收,吸收,相位和极化,脉冲持续时间,脉冲持续时间等[1-4]。因此,这些光学特性是由波长,入射角和极化的函数控制的。例如,今天,我们合成和制造了许多光学功能,例如抗反射器,极化器和束分式拆分器,二分色过滤器,镜像和窄带过滤器,多PIC过滤器,高和低通滤波器,高通滤波器,逆滤波器,逆滤波器,chir滤波器和其他滤镜。合成(或设计或反问题)技术从数学和算法的角度取得了很大发展,到现在可以将任何任意光学(强度)函数与多层合构成的点。同时,制造技术已经发生了很大的发展,因此现在可以生产几百个薄层不同材料的过滤器,每一层的厚度从几nm到几百nm不等。某些问题自然保持开放,例如(除其他)相位和宽带特性,大块和微材料以及非光学特性。用于旗舰应用,例如引力波[5,6]或陀螺仪的镜子,而空间光学器件,当前的挑战是打破PPM屏障,即确保通过吸收和散射造成的总损失少于入射通量的100万。尽管假想索引(几个10-6)和多层组件中的低粗糙度(nm的一部分),但尚未达到这种艺术状态。应注意,这些损失也与组件的激光通量抗性直接相关,具体取决于照明状态[7]。在最低的光学损失的最后背景下,这项工作已经进行了。在所需的精度水平上,我们需要分析吸收机制的细节,考虑到这种吸收被转移到热传导,对流和辐射的过程中。对这种光诱导的热辐射的分析[8-10]至关重要:首先,它使我们能够追踪非常低的吸收水平(目前难以测量10-6以下),这可以允许确定
量化的电磁波(称为光子)对于基本物理效应(例如热辐射或光的自发发射)是中心的。光子之间的量子相干性证实了量子力学的最惊人的预测。这也彻底改变了密码学和高精度感测。该课程的目的是发展基本理论,并在强调量子技术中应用光子与材料的相互作用的深度知识。
摘要:Cas9(DCAS9)核酸内切酶的催化无效突变体具有多种生物医学应用,最有用的是转录的激活/抑制。dcas9家族成员也正在成为潜在的实验工具,用于在独立活细胞和完整组织的水平上进行基因映射。我们对CAS9介导的核室可视化的一组工具进行了初步测试。我们研究了doxycycline(DOX) - 可诱导(TET-ON)的细胞内分布,这些构建体的构造中编码DCAS9直系同源物(ST)(ST)和脑膜炎N.脑膜炎(NM)与EGFP和MCHERRY FOLORESCENT蛋白(FP)融合的人类A549细胞。我们还研究了这些嵌合荧光构建体的时间依赖性表达(DCAS9-FP)在活细胞中诱导中的诱导中,并将其与实验性DCAS9-FP表达的时间过程进行了比较灌注。在诱导后24小时内,肿瘤异种移植物发生了麦克利 - 奇氏菌表达的体内诱导,并通过使用皮肤的光学清除(OC)来可视化。OC通过局部应用Gadobutrol启用了肿瘤异种移植物中FP表达的高对比度成像,因为红色和绿色通道的FI增加了1.1-1.2倍。
摘要。直接对地球系外行星的直接成像是下一代地面望远镜最突出的科学驱动因素之一。通常,类似地球的系外行星位于与宿主恒星的小角度分离,这使得它们的检测变得困难。因此,必须仔细设计自适应光学(AO)系统的控制算法,以将外部行星与宿主恒星产生的残留光区分开。基于数据驱动的控制方法,例如增强学习(RL),可以改善AO控制的有希望的研究途径。rl是机器学习研究领域的一个活跃分支,其中通过与环境的互动来学习对系统的控制。因此,RL可以看作是AO控制的一种自动方法,在该方法中,其使用完全是交钥匙操作。特别是,已显示基于模型的RL可以应对时间和错误注册错误。同样,它已被证明可以适应非线性波前传感,同时有效地训练和执行。在这项工作中,我们在ESO总部的基于GPU的高阶自适应光学测试台(Ghost)测试台上实施并调整了称为AO(PO4AO)的策略优化的RL方法,在实验室环境中我们证明了该方法的强劲性能。我们的实施允许平行执行训练,这对于天上的操作至关重要。,我们研究了该方法的预测性和自我校准方面。我们为实施开放量有据可查的代码,并指定RTC管道的要求。除了硬件,管道和Python接口潜伏期外,还仅引入了幽灵运行Pytorch的新实现。我们还讨论了该方法的重要超参数以及它们如何影响该方法。此外,本文讨论了潜伏期的潜伏期的来源以及较低潜伏期实现的可能路径。
Div> A Institute of Health and Analytics, Petronas Technology University, Silver, Malaysia B Institute of Autonomous Systems, Petronas Universiti Technology, Silver, Malaysia C Department of Electrical and Electronic Engineering, Universiti Technology Petronas, Silver, Malaysia D Department of Neuroscience Electronique, Informatique et image (LE2I), ERL Vibot CNRS 6000, Universite de Bourgogne, France
