图 1. 单级连续培养(a)和两级连续培养(b)的示意图。在两级连续培养(b)中,橙色箭头、虚线框和字母代表计算整个过程的生物质和乙醇酸生产率的过程和参数。
摘要:由于迅速的工业化,人口增长和使用现代技术的进步,传统塑料的合成在过去几十年中大大增加了。但是,这些化石燃料的塑料过度使用通过造成污染,全球变暖等,从而造成了严重的环境和健康危害。因此,将微藻用作原料是一种有希望的,绿色和可持续的方法,用于生产生物塑料。可以在不同的微藻菌株中生产各种生物聚合物,例如聚羟基丁酸,聚氨酯,聚乳酸,基于纤维素的聚合物,基于淀粉的聚合物和基于蛋白质的聚合物。不同的技术,包括基因工程,代谢工程,光生反应器的使用,反应表面方法论和人工智能,用于改变和改善微藻库存以较低的成本以较低的成本合成生物塑料的商业合成。与常规塑料相比,这些生物基塑料具有可生物降解,可生物相容性,可回收,无毒,环保和可持续性,具有可靠的机械和热塑性性能。此外,生物塑料适用于在农业,建筑,医疗保健,电气和电子以及包装行业中的大量应用。因此,本综述着重于微藻生物聚合物和生物塑料的技术。此外,还提供了一些影响工业规模生物塑料生产和未来研究建议的挑战。此外,它还讨论了大规模生物塑性生产的创新和有效策略,同时还为生命周期评估,寿命和生物塑料的应用提供了见解。
抽象激光诱导的石墨烯(LIG)具有许多应用的理想特性。然而,需要在生物相容性底物上形成LIG,以进一步扩大基于LIG的技术的整合到纳米机械学中。在这里,报道了链球上藻酸钠的LIG形成。lig是系统地研究的,对材料的理化特征提供了全面的理解。Raman spectroscopy, scanning electron microscopy with energy-dispersive x-ray analysis, x-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy and x-ray photoelectron spectroscopy techniques con fi rm the successful generation of oxidized graphene on the surface of cross-linked sodium alginate.探索了激光参数的影响和掺入藻酸盐底物中的交联量的量,表明较低的激光速度,较高的分辨率和增加的CACL 2含量会导致带有较低电阻的LIG。这些发现可能对用量身定制的导电性能在藻酸盐上制造LIG具有显着意义,但它们也可能对其他生物相容性底物的LIG形成起着指导作用。
海洋生态系统是我们星球上最大的水生生态系统,维持了整个世界生物多样性的近50%。海洋和陆地环境依赖于各种生态系统,例如潮间带,潮汐区,深海,珊瑚礁,盐沼,河口,河口,泻湖和红树林,这对于其可持续性至关重要。藻类是自养植物,主要生活在水中,并有许多不同类型的植物,从衣原体,小球藻和硅藻是单细胞生物的,到fucus和sargassum,它们是多细胞生物的。海洋藻类的分类包括两个主要类别:海洋微藻和海洋大藻类。海洋微藻,通常称为浮游植物,仅在使用显微镜的情况下观察到。海洋大型藻类,也称为海藻,水植物或水生植物,涵盖了所有类型的海洋藻类,它们在没有显微镜的无助的情况下是可观察到的(Ranjith等,2018)。
作者:Daisuke Shimamura,Tomoaki Ikeuchi,Ami Matsuda,Yoshinori Tsuji,Hideya Fukuzawa,Keiichi
摘要:废水主要根据其生产来源分类为国内,工业和农业工业。Piggery废水(PWW)是一种牲畜废水,其特征是其高浓度的有机物和铵,以及其异味。传统上,PWW在开放的厌氧泻湖,厌氧消化器和活化的污泥系统中进行了处理,这些污泥系统分别表现出较高的温室气体排放,有限的养分清除和高能量消耗。光合微生物可以以低运营成本和碳,氮和磷的能力恢复,可以在工程光生反应器中支持可持续的废水处理。这些微生物能够通过光合作用过程吸收太阳照射,以获得能量,该能量用于其生长以及相关的碳和养分所吸收。紫色的亲子细菌(PPB)代表了自然界中用途最广泛的代谢的光合作用微生物,而微藻是近年来最研究的光合微生物。本综述描述了使用光合微生物(例如PPB和微藻)的水浸处理处理的基本原理,对称性和不对称性。还讨论了主要的光生物反应器配置以及PPB和微藻生物量量化策略的潜力。
加州《可持续地下水管理法》(SGMA)要求限制地下水抽取量,再加上气候变化的影响,正在迫使水资源管理者、农民和社区减少用水量,同时保持农作物产量并提高社会和环境复原力。多效土地再利用是一个有前途的解决方案,它涉及将灌溉农业用地转变为促进节水的用途,并使社区和生态系统受益。在某些情况下,农民可以获得补偿,以将他们的农田转变为其他有益用途,例如公园、栖息地走廊、新的社会经济机会、非灌溉牧场、清洁工业和可再生能源的空间以及野生动物友好的多效补给盆地(EDF 2021;Fernandez-Bou 等人 2023)。农光伏和生态光伏展示了如何通过安装太阳能电池板将清洁能源融入多效益土地再利用项目中,同时转向其他有益活动,例如过渡到耗水量较少的作物、覆盖作物、栖息地恢复和非灌溉牧场。农光伏和生态光伏有助于实现清洁能源生产、能源弹性和节水目标,同时为土地所有者和农民提供额外的收入来源。作为土地管理整体方法的一部分,农光伏和生态光伏代表了创新解决方案,支持农村社区的长期可持续性和弹性并保护其农业遗产(Adeh、Selker 和 Higgins 2018;Sturchio 和 Knapp 2023;Tölgyesi 等人 2023;Warmann、Jenerette 和 Barron-Gafford 2024)。
人们正在考虑在下一代光刻节点中使用 Ta 基吸收体的替代品,以减少 3D 掩模效应并通过相位干涉改善图像调制。低复折射率 (n-ik) 材料可以在比传统吸收体所需厚度更薄的情况下提供相移行为,本质上充当衰减相移掩模 (attPSM) 膜。确定 attPSM 吸收体厚度和随之而来的相位需要确定最佳相移掩模反射率。使用高反射率吸收体进行成像可显示出更好的成像性能。吸收体厚度是在干涉效应导致高吸收体反射率的地方确定的。因此,低折射率 (n) 材料是理想的 attPSM 吸收体候选材料。使用维纳边界和有效介质近似 (EMA) 建模确定的低 - n 材料组合使用吸收体反射率在线空间和接触孔图案针对 NILS 和 MEEF 进行优化。使用反射近场强度成像将接触孔最佳厚度的吸收体候选物与传统的 Ta 基吸收体进行了比较。