摘要。详细分析了使用平面和曲面光子微机电系统镜进行高斯光束的自由空间耦合。分析了理论背景和非理想效应,例如有限的微镜范围、球面微镜曲率不对称、轴未对准和微镜表面不规则。使用推导的公式从理论和实验上研究和比较平面(一维)、圆柱形(二维)和球面(三维)微镜的行为。分析重点关注曲面微镜曲率半径与入射光束瑞利范围相当的尺寸范围,也对应于参考光斑尺寸。考虑到可能的非理想性,推导出基于传输矩阵的场和功率耦合系数,用于一般微光学系统,其中考虑了微系统切向和矢状平面中的不同矩阵参数。结果以归一化量的形式呈现,因此研究结果具有普遍性,可应用于不同情况。此外,还制造了形状可控的硅微镜,并用于实验分析可见光和近红外波长的耦合效率。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。分发或复制本作品的全部或部分内容需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.JOM.2.3.034001]
抽象的机器学习一直在赋予系统设计各个方面的无线通信能力,其中基于加固的方法(RL)方法可以直接与环境互动,并有效地从收集的经验中学习,从而引起了很多研究的关注。在本文中,我们提出了一种新颖且有效的基于RL的多光束组合方案,用于未来毫米波(MMWAVE)三维(3D)多输入多输入 - 多数输出(MIMO)通信系统。所提出的方案不需要完美的渠道状态信息(CSI)或通常在实践中很难获得的精确用户位置,并且很好地解决了由多用户,多路径和多孔通信系统的极为巨大状态和动作空间产生的计算复杂性的关键挑战。尤其是,提出了一个自我发项的深层确定性策略梯度(DDPG)的束选择和组合框架,以自适应地学习没有CSI的3D光束成型模式。我们旨在通过优化每个用户的服务束集和相应的组合权重来最大化MMWAVE 3D-MIMO系统的总和。为此,利用基于变压器的自我发项DDPG来获得输入元素的全局信息,并精确地捕获信号方向,从而实现了最佳的光束形式设计。仿真结果验证了所提出的自我发项DDPG的优越性,而不是在各种情况下的总和率方面的基于AI的光束成型方案。
图 2. 所提出的光控编码元件的设计和特性。a) 元原子编码元件的详细结构,在 SiO 2 基板上构建了 1 μm 厚的金方块和 1 μm 厚的 GeTe 方块图案。b) 编码元件两种状态的示意图:状态“0”表示 GeTe 的非晶态(绝缘态),状态“1”表示 GeTe 的晶体(导电)态。c) 和 d) 两种状态下编码元件的相应反射特性(c 幅度和 d 相位)。e) GeTe 层表面电阻随温度的变化(双探针测量),显示两种状态下的电特性相差六个数量级以上,并且冷却至室温时晶体状态具有非挥发性行为。 f) 有限元模拟 GeTe 层在具有不同能量密度的 35 纳秒长单脉冲紫外激光照射下的温度上升情况:单脉冲的通量为 90 mJ/cm 2,将使最初为非晶态的 GeTe 的温度升至其结晶温度 ( TC ) 以上,而随后的 190 mJ/cm 2 激光脉冲将使 GeTe 的温度升至其局部熔化温度 TM 以上,并将材料熔化淬火回非晶态。下图是拟议的 1 比特元原子的配置和示意图
毫米波(MMW)及以后,由于其有利的功能,包括高数据传输率,足够的容量和低潜伏期,引起了学术和行业的广泛关注和兴趣。然而,在毫米波带上以及超出对天线的严格要求,以维持链路预算,对毫米波带的重要空间路径损失和阴影效应的内在挑战。MMW和Anter Beyond Antennas的一个关键特征是光束转向,表明天线可以切换光束,以便有效地跟踪和通信移动或多个用户。考虑到高效和节能的5G MMW以及超越蜂窝和卫星通信,因此需要开发创新的光束驱动技术来满足不断发展的需求。工业部门和学术部门都已经适当地承认了这些挑战,并率先着眼于梁探手技术的研究和开发。
• 需要光束组合以进一步提高功率 • HP 工业光纤激光器:带宽(~5-10nm)-> 不可光束组合;或多模光纤(强度降低)-> 光束质量 (BQ)/亮度较差 • 可光束组合光纤:需要窄线宽和单模 BQ
脚踏板非常适合预夹紧或作为机械切割线指示器。调节旋钮可无级调节夹紧压力(最小 200/最大 1100 daN)和压力表。假夹板适合精细工作。坚固的前台由压铸铝制成,配有不锈钢台面。(型号 5560 LT:带气台)。坚固的压铸机架结构可吸收切割过程中的力。此外,非常实用:堆叠角和脚轮便于运输。
研究重型离子集合中产生的物质集体扩展的特性提供了一种独特的工具,可以更好地了解QCD的非扰动方面。需要从理论和实验方面输入。流体动力学量预测颗粒产生的各向异性,这是由于系统进化的初始状态下的不对称性。这些各向异性的系统学(能量,系统依赖性)的测量不仅可以验证理论思想,还可以确定未知元素,例如等离子体属性(EOS),主题过程。在这个主题中扩大我们的知识是The SIS的主要目标。实验方法用于提供对颗粒和反颗粒扩展中各向异性研究的见解,而理论方法则用于EOS研究。
空间结构光场应用于半导体量子点会产生与均匀光束根本不同的吸收光谱。在本文中,我们使用圆柱多极展开式对不同光束的光谱进行了详细的理论讨论。对于量子点的描述,我们采用了基于包络函数近似的模型,包括库仑相互作用和价带混合。单个空间结构光束和状态混合的结合使得量子点中的所有激子态都变为光可寻址。此外,我们证明可以定制光束,以便选择性地激发单个状态,而无需光谱分离。利用这种选择性,我们提出了一种测量量子点本征态激子波函数的方法。该测量超越了电子密度测量,揭示了激子波函数的空间相位信息。这种相位信息的提取是从偏振敏感测量中已知的;然而,这里除了二维偏振自由度之外,还可以通过光束轮廓获得无限大的空间自由度。
摘要:我们提出了一种紧凑型光学头设计,用于使用深度频率调制干涉法 (DFMI) 进行宽范围、低噪声位移传感。轴上光束拓扑结构在准单片组件中实现,依靠立方体分束器和通过垂直表面的光束传输来保持角度对准在空气或真空中运行时恒定,这会导致产生鬼光束,从而限制相位读出线性。我们研究了将这些光束耦合到 DFMI 的非线性相位读出方案中,并对相位估计算法进行了调整以减少这种影响。这是通过平衡检测和深度频率调制干涉法中具有不同相对时间延迟的拍频信号的固有正交性的组合来实现的,这是异差、正交或同差干涉法所不具备的独特功能。
具有平移不变性(因而对光学错位具有鲁棒性)的薄膜光学元件对于紧凑型和集成型光学设备的快速开发至关重要。在本信中,我们通过实验展示了一种光束整形元件,它通过空间滤波激光束的基本高斯模式来产生环形光束。该元件由使用溅射薄膜制造的一维光子晶体腔组成。该元件的平面结构和面内对称性使我们的光束整形技术具有平移不变性。产生的环形光束对入射激光束的偏振方向和波长敏感。利用环形光束的这种特性,我们展示了不同波长的同心环形光束的同时产生。我们的实验观察结果与使用有限差分时域法执行的模拟结果高度一致。这种光束整形元件可应用于从显微镜和医学到半导体光刻和微电子工业制造等领域。