GORE ® 航空高速数据线专为严苛的航空航天环境而设计,采用创新的含氟聚合物材料制成,可提供出色的信号完整性,从而在小巧轻便的封装中实现可靠的数据传输。它们满足甚至超出了航空电子网络、飞行管理系统、数字视频系统、串行总线、气象测绘等应用的严格行业要求。此外,Gore 的高速铜缆和光纤互连产品系列支持最新的开源架构和标准化协议,例如以太网、USB、HDMI、FireWire、光纤通道等
请记住,产品碳足迹值仅是估计值;因此,这些值受到不确定性的约束,不应用于排放清单或正式的碳足迹练习。实际产品碳足迹值可能会因多种因素而异,包括设备的配置和使用,部署的位置以及使用了哪种类型的电源。能源部门的碳强度因国家 /地区而异。Broadcom提供了第5个百分位数和第95个百分位数,以反映可能的范围。对于Brocade X7-8光纤通道总监,平均大小的192端口配置的估计平均产品碳足迹为36,491千克CO2E,标准偏差为21,591 kg CO2E。
摘要 MIL-STD-1553 为飞行界提供了良好的服务。然而,近年来出现了几种新的高速总线标准,它们在数据吞吐量和增加的地址空间等各个方面都优于 1553。在此期间,任务要求(包括视频和音频)变得更加数据密集。虽然其中一些总线最初不是为航空电子行业设计的(例如以太网、FireWire 和光纤通道),但它们可能作为用于设置和数据采集的高速商用现货 (COTS) 解决方案而受到关注。这些总线不仅在总采样率方面提供了改进的整体系统性能,而且还简化了现有的数据采集系统架构。它们需要更少的高带宽链路,可以用于设置和数据。本文探讨了其中的一些问题,特别关注 IEEE1394,也就是众所周知的 FireWire。1.简介
摘要 MIL-STD-1553 为飞行界提供了良好的服务。然而,近年来出现了几种新的高速总线标准,它们在数据吞吐量和增加的地址空间等各个方面都优于 1553。在此期间,任务要求(包括视频和音频)变得更加数据密集。虽然其中一些总线最初不是为航空电子行业设计的(例如以太网、FireWire 和光纤通道),但它们可能作为用于设置和数据采集的高速商用现货 (COTS) 解决方案而受到关注。这些总线不仅在总采样率方面提供了改进的整体系统性能,而且还简化了现有的数据采集系统架构。它们需要更少的高带宽链路,这些链路既可用于设置也可用于数据。本文研究了其中一些问题,特别关注 IEEE1394,即众所周知的 FireWire。1. 简介
图 2:4. 非平凡拓扑结构中的第二代量子中继器网络示例,使用内存辅助量子中继器、量子交换机/路由器和纠错纠缠交换测量。纠缠光子对从源(黄色六边形)沿着量子光纤通道(红线)连续传输到贝尔接收器节点(绿色圆圈),在那里它们被捕获并存储在量子存储器(蓝色圆柱体)中。当两个节点(例如图中的 A 和 B)的用户需要纠缠对时,可以使用多跳纠缠交换来在 A 和 B 节点存储的现有光子之间建立纠缠连接,方法是对存储在中间节点中的现有光子进行贝尔态测量(紫色菱形)。................ ...
NetApp AFF 和 FAS 集群使用主动-主动控制器架构,通过使用多种协议和光纤通道和以太网结构来提供统一的 SAN 和 NAS 存储。此架构将路由直接通告给托管 LUN 的控制器作为主动优化 (AO) 路径,而所有其他路径(间接路径)则通告为主动非优化 (ANO) 路径。除非不存在主动优化路径,否则不会使用主动非优化路径。选择此架构是为了让 HA 对中的两个控制器的性能能力为系统的整体日常性能做出贡献。其他供应商的主动-主动控制器架构将第二个控制器降级为更被动的状态,从而限制了 99% 日常操作的整体存储阵列性能。图 1 说明了 NetApp 优化/非优化的主动-主动控制器路径。
NetApp AFF 和 FAS 集群使用主动-主动控制器架构,通过使用多种协议以及光纤通道和以太网结构来提供统一的 SAN 和 NAS 存储。此架构将路由直接通告到托管 LUN 的控制器作为主动优化 (AO) 路径,而将所有其他路径(间接路径)通告为主动非优化 (ANO) 路径。除非不存在主动优化路径,否则不会使用主动非优化路径。选择此架构是为了让 HA 对中的两个控制器的性能能力都有助于系统的整体日常性能。其他供应商的主动-主动控制器架构将第二个控制器降级为更被动的状态,从而限制了 99% 日常操作的整体存储阵列性能。图 1 说明了 NetApp 优化/非优化的主动-主动控制器路径。
为了克服这些限制,NVMe-oF (NVMe-over-Fabric) 协议标准应运而生,使客户能够通过网络部署 NVMe,并获得与本地 NVMe 相同的性能。通过将 NVMe 协议扩展到以太网和光纤通道,NVMe-oF 充分利用了 NVMe SSD 的全部潜力,提高了存储和服务器之间通过网络传输数据的速度和效率。虽然各种横向扩展 NVMe 解决方案都使用 NVMe-oF 协议,但它仍然存在挑战。例如,传统存储控制器无法利用 NVMe 功能,在传统存储阵列中部署 NVMe SSD 时,这会成为性能瓶颈。此外,基于 x86 的 NVMe 解决方案在运行压缩、重复数据删除、擦除编码和加密等数据服务时会大幅降低性能。要充分利用 NVMe SSD 的性能优势(同时尽量减少权衡),需要一种新的、分解的存储架构,利用 NVMe 的高级功能无缝连接网络上的闪存存储。
随着理论和应用技术的进步,基于经典加密的通信系统受到量子计算和分布式计算的严重威胁。为了抵御安全威胁,一种将机密信息直接加载到量子态上的通信方法——量子安全直接通信(QSDC)应运而生。本文报告了第一个连续变量QSDC(CV-QSDC)实验演示,以验证基于高斯映射的CV-QSDC协议的可行性和有效性,并提出了一种实际信道下信号分类的参数估计。在我们的实验中,我们提供了4×10 2 个块,每个块包含10 5 个数据用于直接信息传输。对于我们实验中5 km的传输距离,过剩噪声为0.0035 SNU,其中SNU表示散粒噪声单位。4.08×10 5 bit/s的实验结果有力地证明了光纤信道下CV-QSDC的可行性。提出的基于参数估计的等级判断方法为实际光纤通道中的CV-QSDC提供了一种实用、可用的消息处理方案,为等级协调奠定了基础。
100GE 100 GBit/s 以太网 16CIF 16 倍通用中间格式(图片格式) 16QAM 16 状态正交幅度调制 1GFC 1 千兆波特光纤通道(2、4、8、10、20GFC) 1GL 第一代语言(Maschinencode) 1TBS 单真括号样式(C) 1TR6(ISDN-Protokoll D-Kanal,国家) 247 24/7:每天 24 小时,每周 7 天 2D 二维 2FA 双因子认证 2GL 第二代语言(汇编程序) 2L8 太晚(俚语) 2MS 结构单极 2 Mbit/s 3D 三维 3GIO 第三代 I/O(总线、接口) 3GL 第三代语言(C/C++、Fortran、Cobol) 3GPP 第三代合作伙伴计划 3LH 第三级层次结构 3PCC 第三方呼叫控制 3R 重定时、重塑、重新放大 3RR 三重还原规则(维基百科) 3T 3 刻度(CD/DVD) 4CIF 4 次通用中间格式(图片格式) 4GL 第四代语言(SQL、Labview、ABAP) 4LH 第四级层次结构 4MV 4 运动矢量 4U For You 5G 第五代(移动电话)