摘要:光引起的n = n双键异构化的偶氮元素位于众多应用的核心,从催化,能源储存或药物释放到光遗传学和光电学。While efficient switching between their E and Z states has predominantly relied on direct UV light excitation, a recent study by Klajn and co-workers introduced visible light sensitization of E azoarenes and subsequent isomerization as a tool coined disequilibration by sensitization under confinement (DESC) to obtain high yields of the out-of-equilibrium Z isomer.这种宿主 - 阵线方法仍在高级多组分分子系统中的适用性和功能有限的小型,最小取代的偶氮烯酸含量仍然存在。在此,我们扩展了DESC概念,以引导表面活性剂超分子在空气水接口处。利用可拍摄的芳基唑吡唑两亲物利用我们的专业知识,我们通过可逆的E -Z同源化引起了表面张力和表面过量水的实质性改变。在研究了带电和负电荷的表面活性剂与宿主的结合后,我们发现两种异构体的可见光照射时表面活性差异的程度与直接UV光激发观察到的态度相当。该方法在较大的浓度(从µm到M m)上进行了证明,并且可以使用绿色或红光同样激活,具体取决于选择的敏化剂。在复杂的分子网中,可见光的光电开关敏化的直接实现 - 展示了DESC如何改善现有光响应系统的改善,并允许开发新型应用程序,专门用可见光驱动。
您是否曾经以为光可以告诉您有关您的大脑的信息?Light是一种强大的工具,可帮助大脑研究人员了解大脑。我们的眼睛只能看到我们周围的总光线的1%。一些光是红色,所谓的近红外光。这种类型的光可以通过大脑的头部和顶层传播,从而为研究人员提供有关大脑活动的重要信息。使用近红外光的技术具有较长的名称:功能性近红外光谱(FNIRS)。在本文中,我们将向您展示FNIRS机器的外观以及参加FNIRS实验的感觉。我们将解释如何使用近红外光更好地了解大脑。最后,我们将为您提供一些例子,说明我们使用的fnirs的目的以及它如何帮助从长远来看在日常生活中面临困难的孩子。
有效和宽带向前散射对于元原子来说是重要的。强的竞争者包括具有定制多极含量的胶体纳米镜,以达到抑制后散射的适当干扰。我们考虑了由一百多个银纳米斑点组成的密集的等离子球。数值模拟提供了对多极矩在散射行为中起作用的作用的充分理解。它们是使用乳液干燥制造的,并具有光学特征。在整个可见范围内证明了强度和有效的前向散射。具有相等振幅和相位的电和磁偶极子共振。这种等离子球可以用作底部跨表面应用的元原子。
在低收入和中等收入国家中的抽象引入,肺炎仍然是儿童疾病和死亡的主要原因。推荐的用于诊断小儿肺炎的工具是对胸部X射线图像的解释,这很难标准化,需要训练有素的临床医生/放射科医生。当前的自动计算工具主要集中于评估成年肺炎,并接受了由单个专家评估的图像进行培训。我们旨在使用深入学习方法来提供一种计算工具,以使用由WHO专家X射线图像阅读面板训练的多位专家评估的X射线图像来诊断小儿肺炎。方法和分析目前正在从孟加拉国正在进行的WHO支持的监视研究中收集大约1万个小儿X射线X射线图像。每个图像将由两个训练有素的临床医生/放射科医生阅读,以在每个肺中存在或不存在原发性肺炎(PEP),如WHO所定义。在任何一个肺部都不相处的PEP标签的图像将由第三名专家审查,最终任务将使用多数票进行。卷积神经网络将用于肺部分割,以使图像对齐和扩展为参考,并将图像解释为PEP的存在。该模型将根据来自WHO的独立收集和标记的图像集进行评估。研究结果将是解释用于诊断小儿肺炎的胸部X光片的自动化方法。该研究使用正在进行的WHO协调监视中的现有X射线图像。道德和传播所有研究方案均由孟加拉国儿童健康研究所的伦理审查委员会批准。该研究的发起人认为,不需要获得英国爱丁堡大学研究与发展的学术和临床中央办公室的道德批准。所有发现将在开放式杂志上发表。将公开提供所有X射线标签和统计代码。将根据要求提供模型和图像。
* Fateme Mahdikhany和Sean Driskill是这项工作的同等贡献者,并被指定为第一作者。通讯作者:John Schaibley,Johnschaibley@arizona.edu
https://www.jioforme.com/new-smart-window-material-can-block-rays-without-blocking-the-view/909893/ 1/4
摘要:我们报告了原始[5,5] C 130 -D 5H(1)富勒伯液的开创性实验分离和DFT表征。此成就代表了以原始形式获得的最大的可溶性碳分子。[5,5] C 130物种是迄今为止纯化的最高纵横比的富列型,现在超过了最近的巨型[5,5] C 120 -D 5D(1)。与C 90,C 100和C 120富默物相比,C 130 -D 5H的纳米管碳(70)比末端cap富烯基原子(60)多。从39,393个可能的C 130孤立的五角大楼规则(IPR)结构开始,在分析了极化性,保留时间和紫外线光谱后,这三层数据层明显预测了单个候选异构体和富富集管,[5,5] C 130 -D 5H(1)。通过原子分辨率的茎数据增强了这种结构分配,显示了与[5,5] C 130 -D 5H(1)富勒伯一致的独特和管状“类似药丸”结构。与球体富勒烯反应的高选择性允许从烟灰提取物中轻松分离并去除富富集。实验分析(HPLC保留时间,UV-VIS和STEM)协同使用(具有极化性和DFT属性计算)来降低选择并确认C 130 FullerTube结构。实现了新的[5,5] C 130 -D 5H富勒特管的隔离,为富勒特管系列的电子限制,荧光和金属特征的应用开发和基本研究打开了富勒彭的一系列具有系统的管子伸长的分子。这个[5,5]富勒伯家族还邀请了单壁碳纳米管(SWCNT),纳米角(SWCNHS)和Fullerenes进行比较研究。
图3。(a)从左到右的顶行:边缘SEM,能量色散光谱(EDS)分析,显示了TIO 2纳米分布的分布以及高指数平面化a 〜4.25 µm和H〜1.8 µm的高指数平面底物S的红色激光衍射模式。 (b)中排:平面底物u的边缘SEM和红色激光衍射模式(A〜16 µm,H〜4.1 µm)。请注意大型无特征中央和六角形散射模式。(c)A 〜15 µm和H〜7 µm的近距离商业MLA的光学图像,以及(d)平面化弥漫性随机结构(基板M)的光学图像; OLED均在所有这些PE上用TiO 2纳米颗粒的高指数像素层制造。
摘要 — 量子计算有可能为许多具有挑战性或超出传统计算机能力的问题提供解决方案。渲染中有几个问题可以用量子计算机解决,但这些问题尚未在实践中得到证实。这项工作迈出了将量子计算应用于渲染中最基本的操作之一的第一步:射线投射。该技术计算由一组几何图元描述的 3D 世界模型中两点之间的可见性。对于给定的射线,该算法返回与其原点最接近的图元相交。如果没有空间加速结构,此操作的经典复杂度为 O(N)。在本文中,我们提出了一种用于射线投射的 Grover 算法(一种量子搜索算法)的实现。这提供了二次加速,允许在 O(√) 中对非结构化图元进行可见性评估
摘要:欧洲战略长期愿景强调了更智能和灵活的系统在2050年之前实现净零温室气体排放的重要性。分布式能源(DER)可以提供所需的灵活性产品。分配系统运营商(DSO)与TSO(传输系统运营商)合作致力于通过基于市场的程序采购这些功能可及性产品。在所有DERS中,电池储能系统(BES)是一项有前途的技术,因为它们可能会出于广泛的目的而被利用。但是,由于其成本仍然很高,因此应优化其大小和位置,以最大程度地提高所有者的收入。打算提供一种评估要在DSO和TSO之间共享的灵活性产品的工具。对比的目标,因为BES所有者的收入最大化以及使用创新解决方案固有的DSO风险最小化。通过将方法应用于真实的意大利中型电压(MV)分布网络来验证所提出的模型。