受控/活性自由基聚合 (CLRP) 技术被广泛用于合成先进且受控的合成聚合物,用于化学和生物应用。虽然自动化长期以来一直是提高生产率以及合成/分析可靠性和精度的高通量 (HTP) 研究工具,但 CLRP 的氧不耐受性限制了这些系统的广泛采用。然而,最近出现了氧耐受性 CLRP 技术,例如氧耐受性光诱导电子/能量转移 - 可逆加成 - 断裂链转移 (PET - RAFT)、RAFT 的酶脱气 (Enz-RAFT) 和原子转移自由基聚合 (ATRP)。本文展示了如何使用 Hamilton MLSTARlet 液体处理机器人来自动化 CLRP 反应。合成过程使用 Python 开发,用于自动化试剂处理、分配序列和在 96 孔板中创建均聚物、随机异聚物和嵌段共聚物所需的合成步骤,以及聚合后改性。使用这种方法,展示了高度可定制的液体处理机器人和耐氧 CLRP 之间的协同作用,以实现 HTP 和组合聚合物研究的高级聚合物合成自动化。
CRISPR-Cas 系统为可编程基因组编辑提供了多功能工具。在这里,我们开发了一种笼状 RNA 策略,允许 Cas9 结合 DNA,但在光诱导激活之前不会切割。这种方法称为超快速 CRISPR (vfCRISPR),可在亚微米和秒级产生双链断裂 (DSB)。同步切割改善了 DNA 修复的动力学分析,揭示了细胞在几分钟内对 Cas9 诱导的 DSB 作出反应,并且可以在 DNA 连接后保留 MRE11。DNA 损伤后 H2AX 的磷酸化以每分钟超过 100 千碱基的速度传播,最高可达 30 兆碱基。使用单细胞荧光成像,我们表征了 53BP1 修复焦点形成和溶解的多个循环,第一个循环比后续循环花费的时间更长,其持续时间受修复抑制的调节。成像引导的亚细胞 Cas9 激活进一步促进了具有单等位基因分辨率的基因组操作。 vfCRISPR 能够在空间、时间和基因组坐标上进行高分辨率的 DNA 修复研究。R
摘要:碳纳米带是由完全融合的边缘共享芳烃环组成的圆柱形分子。由于其美观的结构,它们获得了不寻常的光电特性,可能适用于纳米电子学和光子学的一系列应用。然而,其合成成功率非常有限,导致其光物理特性仍然很大程度上未知。与碳纳米环(由单键连接的芳烃)相比,纳米带的强结构刚性可防止其发生偏离原始高对称构象的重大变形,因此影响其光物理特性。在此,我们研究了成功合成的(6,6)CNT(碳纳米管)带段的光诱导动力学。使用非绝热激发态分子动力学模拟对此过程进行建模,揭示了不同类型碳原子上激发态波函数定位变化所起的关键作用。这样可以详细描述整个纳米带骨架中的激发态动力学和空间激子演化。我们的研究结果提供了有关激发态电子特性和内部转换率的详细信息,这些信息可能对设计用于纳米电子和光子应用的纳米带有用。
4. Tu, Q.; Spanopoulos, I.; Hao, S.; Wolverton, C.; Kanatzidis, MG; Shekhawat, GS; Dravid, VP, 探究二维混合有机-无机钙钛矿中的应变诱导带隙调制。ACS Energy Letters 2019, 4 (3), 796-802。5. Zhu, C.; Niu, X.; Fu, Y.; Li, N.; Hu, C.; Chen, Y.; He, X.; Na, G.; Liu, P.; Zai, H., 钙钛矿太阳能电池中的应变工程及其对载流子动力学的影响。Nature communications 2019, 10 (1), 1-11。6. Ghosh, D.; Acharya, D.; Zhou, L.; Nie, W.; Prezhdo, OV; Tretiak, S.; Neukirch, AJ,混合钙钛矿中的晶格扩展:对光电特性和电荷载流子动力学的影响。物理化学快报 2019,10 (17),5000-5007。7. Nishimura, K.;Hirotani, D.;Kamarudin, MA;Shen, Q.;Toyoda, T.;Iikubo, S.;Minemoto, T.;Yoshino, K.;Hayase, S.,Sn-钙钛矿太阳能电池的晶格应变与效率之间的关系。ACS 应用材料与界面 2019,11 (34),31105-31110。8. Zhao, J.;Deng, Y.;Wei, H.;Zheng, X.;Yu, Z.;Shao, Y.;Shield, JE; Huang, J., 应变混合钙钛矿薄膜及其对钙钛矿太阳能电池固有稳定性的影响。Science advances 2017, 3 (11), eaao5616。9. Liu, Y.; Collins, L.; Proksch, R.; Kim, S.; Watson, BR; Doughty, B.; Calhoun, TR; Ahmadi, M.; Ievlev, AV; Jesse, S.; Retterer, ST; Belianinov, A.; Xiao, K.; Huang, J.; Sumpter, BG; Kalinin, SV; Hu, B.; Ovchinnikova, OS, CH3NH3PbI3 钙钛矿中铁弹孪晶畴的化学性质。Nature Materials 2018, 17 (11), 1013-1019。10. Bush, KA; Rolston, N.; Gold-Parker, A.; Manzoor, S.; Hausele, J.; Yu, ZJ; Raiford, JA; Cheacharoen, R.; Holman, ZC; Toney, MF,钙钛矿薄膜形成过程中控制薄膜应力和起皱。ACS Energy Letters 2018, 3 (6), 1225-1232。11. Rolston, N.; Bush, KA; Printz, AD; Gold ‐ Parker, A.; Ding, Y.; Toney, MF; McGehee, MD; Dauskardt, RH,钙钛矿太阳能电池中的工程应力以提高稳定性。Advanced Energy Materials 2018, 8 (29), 1802139。12. Liu, Y.; Ievlev, AV; Collins, L.; Belianinov, A.; Keum, JK; Ahmadi, M.; Jesse, S.; Retterer, ST; Xiao, K.; Huang, J., 金属卤化物钙钛矿中的应变-化学梯度和极化。先进电子材料 2020,6 (4),1901235。 13. Jacobsson, TJ;Schwan, LJ;Ottosson, M.;Hagfeldt, A.;Edvinsson, T.,利用 x 射线衍射确定甲基铵铅钙钛矿中的热膨胀系数并定位温度诱导的相变。无机化学 2015,54 (22),10678-10685。 14. Rolston, N.;Bennett-Kennett, R.;Schelhas, LT;Luther, JM;Christians, JA;Berry, JJ;Dauskardt, RH,关于“光诱导晶格膨胀导致高效率钙钛矿太阳能电池”的评论。 Science 2020, 368 (6488)。15. Tsai, H.;Asadpour, R.;Blancon, J.-C.; Stoumpos, CC; Durand, O.; Strzalka, JW; Chen, B.; Verduzco, R.; Ajayan, PM; Tretiak, S.,光诱导晶格膨胀可实现高效钙钛矿太阳能电池。Science 2018,360 (6384),67-70。16. Tsai, H.;Nie, W.;Mohite, AD,对“光诱导晶格膨胀可实现高效太阳能电池”评论的回应。Science 2020,368 (6488)。17. Liu, Y.;Ievlev, AV;Collins, L.;Borodinov, N.;Belianinov, A.;Keum, JK;Wang, M.;Ahmadi, M.;Jesse, S.; Xiao, K., 有机-无机杂化钙钛矿中的光-铁相互作用。先进光学材料 2019, 7 (23), 1901451。18. Zhou, Y.; You, L.; Wang, S.; Ku, Z.; Fan, H.; Schmidt, D.; Rusydi, A.; Chang, L.; Wang, L.; Ren, P., 有机-无机铅卤化物钙钛矿中的巨光致伸缩。自然通讯 2016, 7 (1), 1-8。
共轭供体-受体体系中的光诱导电子能量转移自然伴随着接受过量电子能量的分子内振动能量重分布。在此,我们使用非绝热激发态分子动力学模拟,在共价连接的供体-受体分子二元体系中模拟这些过程。我们分析不同的互补标准,系统地识别积极参与供体受体(S2S1)电子弛豫的振动简正模式子集。我们根据所涉及的不同势能面(PES)定义的状态特定简正模式来分析能量转移坐标。一方面,我们识别在电子跃迁过程中对原子核上的主要驱动力方向贡献最大的振动,用供体和受体电子态之间的非绝热导数耦合矢量表示。另一方面,我们监测简正模式的过量能量瞬态积累及其分子内能量重分布通量。我们观察到,活跃模式的子集根据它们所属的 PES 而变化,并且这些模式经历了最显著的重排和混合。促进供体 受体能量汇集的核运动可以主要集中在 S 2 态的一个或两个正常模式上,而在能量转移事件之后,它们会分散到 S 1 态的多个正常模式中。
液晶弹性体 (LCE) 表现出一些显著的物理特性,例如在不同性质的适当环境刺激(如热刺激)下可引起可逆的较大机械变形,这使得它们可以用作软致动器。LCE 所表现出的独特特性源于它们的各向异性微结构,其特点是嵌入聚合物网络中的液晶原分子的优先取向。LCE 设计中的一个悬而未决的问题是如何控制它们的驱动效率:液晶原分子的数量、它们如何连接到网络、有序度、交联密度是一些可控参数,然而,除了最后一个参数外,它们的空间分布一般无法调整。在本文中,我们开发了一个基于微机械的理论框架来模拟和探索网络交联密度对液晶弹性体元件机械驱动的影响。在此背景下,用于获得弹性体交联网络的光诱导聚合(光聚合)尤其令人感兴趣,它适用于精确调整材料内的交联密度分布;该技术能够获得分子级架构的 LCE,从而实现可获得驱动的最佳设计。在智能结构元件(LCE 微结构设计和优化)内正确设置交联密度排列的可能性代表了一种创建具有材料微结构编码所需驱动能力的分子级工程 LCE 元件的有趣方法。
摘要。对跨纳米界界面的光诱导电荷电流的精确和超快控制可能导致在能量收集,超快电子和连贯的Terahertz来源中的重要应用。最近的研究表明,几种相对论机制,包括逆旋转效应,逆Rashba - Edelstein效应和逆旋转轨道扭转效应,可以将纵向注入的自旋极化电流从磁性材料转化为横向电荷电流,从而使Terahertz Generation均可使用这些电流。但是,这些机制通常需要外部磁场,并且在自旋极化速率和相对论自旋转换的效率方面表现出局限性。我们提出了一种非递归和非磁性机制,该机制直接利用界面上的光激发高密度电荷电流。我们证明了导电氧化物RUO 2和IRO 2的电动各向异性可以有效地将电荷电流偏向横向,从而导致有效和宽带Terahertz辐射。重要的是,与以前的方法相比,这种机制具有更高的转化效率,因为具有较大电动各向异性的导电材料很容易获得,而进一步提高重金属材料的旋转台角度将具有挑战性。我们的发现提供了令人兴奋的可能性,可直接利用这些光激发的高密度电流,用于超快电子和Terahertz光谱。
摘要:过渡金属二硫化物 (TMD) 的环境降解是一系列应用中的一个关键绊脚石。我们展示了一种简单的一锅非共价芘涂层工艺,可保护 TMD 免受光诱导氧化和环境老化。芘以非共价方式固定在剥离的 MoS 2 和 WS 2 的基面上。通过电子吸收和荧光发射光谱评估 TMD / 芘的光学特性。高分辨率扫描透射电子显微镜结合电子能量损失光谱证实了广泛的芘表面覆盖,密度泛函理论计算表明 TMD 表面上有约 2-3 层的强结合稳定平行堆叠芘覆盖。在环境条件下以 0.9 mW / 4 µ m 2 照射时,对剥离的 TMD 进行拉曼光谱分析,结果显示由于 Mo 和 W 的氧化状态而产生新的强拉曼谱带。但值得注意的是,在相同的暴露条件下,TMD / 芘保持不受影响。目前的发现表明,在 MoS 2 和 WS 2 上物理吸附的芘可充当环境屏障,防止 TMD 中由水分、空气和激光照射催化的氧化表面反应。拉曼光谱证实,在环境条件下储存两年的混合材料在结构上保持不变,证实了芘不仅可以阻止氧化,还可以抑制老化,具有有益作用。
为了理解自旋流的基本限制并优化自旋注入过程,了解飞秒自旋注入的效率及其背后的微观机制是必不可少的。通过光诱导自旋流来操控磁化已经被证实,即超快退磁[3,6,7,9]以及小角度进动的激发,即GHz和THz自旋波。[12–14]尤其是,通过亚皮秒激光驱动的自旋流可以诱导自旋转移矩(STT),[14]而在重金属-铁磁体界面已经证明了通过圆偏振泵浦脉冲产生的光学自旋矩。[15,16]我们旨在通过结合时间分辨实验和从头算理论来产生微观见解,从而展示确定和提高自旋注入效率的方法,使未来的超快自旋电子学应用成为可能。至关重要的是,非平衡自旋注入集中在低于 100 fs 的脉冲中,从而产生具有高峰值强度的瞬态自旋电流。由于非平衡自旋注入是由光激发引起的,并且由自旋相关的电荷电流组成,因此不仅涉及费米能级附近的状态,还涉及其周围几个 eV 宽的能量区域中的状态,这些能量区域由泵浦激光脉冲的光子能量给出。这将非平衡自旋注入与在平衡条件下电驱动的磁振子自旋电流区分开来。[17–19]
摘要:光氧化还原催化通常依赖于单个发色团的使用,而将两种不同的光吸收剂结合起来的策略很少见。在绿色植物的光系统 I 和 II 中,两个独立的发色团 P 680 和 P 700 都独立地吸收光,然后它们的激发能量以所谓的 Z 方案结合,从而驱动一个热力学上非常苛刻的整体反应。在这里,我们采用这一概念对有机底物进行光氧化还原反应,其中组合能量输入是两个红光子而不是蓝光或紫外光。具体而言,在过量二异丙基乙胺存在下,Cu I 双(α-二亚胺)复合物与原位形成的 9,10-二氰基蒽基自由基阴离子结合可催化约 50 个脱卤和脱甲磺酰反应。这种双光氧化还原方法似乎很有用,因为红光的破坏性较小,而且穿透深度比蓝光或紫外线辐射更大。紫外-可见瞬态吸收光谱表明,溶剂从乙腈到丙酮的细微变化会引起反应机制的转变,涉及占主导地位的光诱导电子转移或占主导地位的三重态-三重态能量转移途径。我们的研究说明了在多光子激发条件下运行的系统的机械复杂性,并提供了有关如何使所需和不需要的反应步骤之间的竞争变得更可控的见解。关键词:光催化、光谱、机械分析、电子转移、能量转移■简介