铜是人类[1,2],植物[3-5],脊椎动物和无脊椎动物[6]的必不可少的痕量元件,并且存在于无数蛋白质和酶的不同活性位点[7-11]。在此类生物系统中,铜酶发挥了诸如氧气摄取和运输等功能。呼吸链中的电子转移;许多底物的催化氧化或还原;抗氧化作用;金属离子的吸收,运输和存储等。[12,13]。从结构上讲,铜化合物以许多构型出现,并以简单的配体或生物分子协调,以广泛的排列[14]。生物系统中存在的铜,Cu +和Cu 2+的两个共同氧化态表现出具有奇特的特性,具有一系列的反应性和核性,形成了单,BI-,BI-,多核,甚至簇种。铜的蛋白质可能具有一个或多个具有不同光谱特征和不同活性的金属离子中心[15]。另一方面,铜离子也参与神经退行性疾病,其中其氧化还原特性起着重要作用[16-22]。考虑到上述铜的不同生物学作用,新的含铜配位配合物的发展是一个强烈的研究主题,涉及探索其药理特性,尤其是其抗癌活性[23 - 31]。在大多数已发表的文章中都报道了潜在的抗癌药。Batista和Coll。Batista和Coll。因此,铜的生物无机化学构成了一个丰富而具有挑战性的调查领域,吸引了世界各地研究小组的关注和兴趣,这表明,通过使用铜结合使用第二个关键词,在文献搜索中发现的大量文件证明了抗菌,抗癌,抗癌,催化剂,mimics,mimics,spectry,specter,spectry,spectry,spectry,spectry,spectry,spectry,spectry,spectry,spectry,spectr <This diversity is clearly demonstrated in this Special Issue of Inorganics, ‘Bioinor- ganic Chemistry of Copper', which contains 14 published articles that explore topics such as antiproliferative studies, anticancer agents, anti-inflammatory compounds, potential radioactive imaging diagnosis agents, reactive species related to amyloid peptides, antipar- asitic activity, catalytic oxidative activity, and蛋白质模仿。A re- view about mixed chelate homoleptic or heteroleptic copper(II) complexes, known as Casiope í nas ® and already used in clinical tests, was provided by Ruiz-Azuara and co- workers (contribution 1), describing translational medicine criteria to establish a normative process for new drug development.(贡献2)分离并表征了一系列Cu(I) / PPH 3 / Naphtoquinone络合物,具有针对多种肿瘤细胞的抗癌特性。它们的作用方式还涉及无活性氧(ROS)产生,无论是在没有(过氧基本)和辐照(羟基自由基)的情况下。
铜是人类[1,2],植物[3-5],脊椎动物和无脊椎动物[6]的必不可少的痕量元件,并且存在于无数蛋白质和酶的不同活性位点[7-11]。在此类生物系统中,铜酶发挥了诸如氧气摄取和运输等功能。呼吸链中的电子转移;许多底物的催化氧化或还原;抗氧化作用;金属离子的吸收,运输和存储等。[12,13]。从结构上讲,铜化合物以许多构型出现,并以简单的配体或生物分子协调,以广泛的排列[14]。生物系统中存在的铜,Cu +和Cu 2+的两个共同氧化态表现出具有奇特的特性,具有一系列的反应性和核性,形成了单,BI-,BI-,多核,甚至簇种。铜的蛋白质可能具有一个或多个具有不同光谱特征和不同活性的金属离子中心[15]。另一方面,铜离子也参与神经退行性疾病,其中其氧化还原特性起着重要作用[16-22]。考虑到上述铜的不同生物学作用,新的含铜配位配合物的发展是一个强烈的研究主题,涉及探索其药理特性,尤其是其抗癌活性[23 - 31]。在大多数已发表的文章中都报道了潜在的抗癌药。Batista和Coll。Batista和Coll。因此,铜的生物无机化学构成了一个丰富而具有挑战性的调查领域,吸引了世界各地研究小组的关注和兴趣,这表明,通过使用铜结合使用第二个关键词,在文献搜索中发现的大量文件证明了抗菌,抗癌,抗癌,催化剂,mimics,mimics,spectry,specter,spectry,spectry,spectry,spectry,spectry,spectry,spectry,spectry,spectry,spectr <This diversity is clearly demonstrated in this Special Issue of Inorganics, ‘Bioinor- ganic Chemistry of Copper', which contains 14 published articles that explore topics such as antiproliferative studies, anticancer agents, anti-inflammatory compounds, potential radioactive imaging diagnosis agents, reactive species related to amyloid peptides, antipar- asitic activity, catalytic oxidative activity, and蛋白质模仿。A re- view about mixed chelate homoleptic or heteroleptic copper(II) complexes, known as Casiope í nas ® and already used in clinical tests, was provided by Ruiz-Azuara and co- workers (contribution 1), describing translational medicine criteria to establish a normative process for new drug development.(贡献2)分离并表征了一系列Cu(I) / PPH 3 / Naphtoquinone络合物,具有针对多种肿瘤细胞的抗癌特性。它们的作用方式还涉及无活性氧(ROS)产生,无论是在没有(过氧基本)和辐照(羟基自由基)的情况下。
上下文。詹姆斯·韦伯(James Webb)太空望远镜(JWST)捕获了有史以来最清晰的红外图像,这是一个原型中等辐照的光子主导区域(PDR),它完全代表了大多数UV-rumumination-the Milecular Soleculin ass the Milecular速度和星星形成的星座。目标。我们研究了一个巨大的恒星在分子云边缘发出的远 - 硫酸酯(FUV)辐射的影响,就光蒸发,电离,解离,H 2激发和粉尘加热而言。我们还旨在限制PDR边缘的结构及其照明条件。方法。我们使用Nircam和Miri获得了17个宽带和6个窄带地图,在宽光谱范围为0.7至28 µm。我们绘制了灰尘发射,包括芳香和脂肪族红外(IR)带,散射光和几个气相线(例如,Paα,Brα,H 2 1-0 S(1)在2.12 µm时)。为了进行分析,我们还将1.1和1.6 µm的两个HST-WFC3图与HS-Stis光谱观测到Hα线相关联。结果。我们以0.1至1''的角度分辨率探测了马头边缘的结构,并解决了其空间复杂性(相当于2×10-4至2×10 - 3 PC或40至400 au,在400 pc的距离处)。我们检测到一个微弱的横纹特征网络,该网络垂直于PDR前面延伸至Nircam的H II区域,Miri和Miri对纳米谷物发射敏感的过滤器以及1.1 µm的HST滤波器中的敏感,从而散布于较大的晶粒散布的光线。这确实可能是第一次检测到蒸发流中灰尘颗粒的夹带。在PDR的照明边缘,H 2的1-0 s(1)线的丝状结构在尺度上呈现出众多尖锐的子结构。与尘埃发射相比,沿边缘沿狭窄的层(宽度约为1'',对应于2×10 - 3 pc或400 au),与灰尘发射相比,H 2发射过量。电离正面和解离前在PDR的外边缘后面出现在距离1-2'',并且似乎在空间上重合,表明中性原子层的厚度很小(低于100 au)。所有宽带图都呈现出照明边缘和内部区域之间的颜色变化。在与天空平面相比,照亮的星σ-orionis略有倾斜的情况下,这可以通过灰尘衰减来解释,从而使马头以倾斜的角度从后面照亮。与Hα,PAα和BRα线中测得的排放的预测偏差也表明灰尘衰减。使用非常简单的模型,我们使用数据来得出灭绝曲线的主要光谱特征。在3 µm处的灭绝少量可能归因于在密集区域形成的晶粒上冰冷的H 2 O层。我们还将衰减曲线从PDR衍生为0.7至25 µm。在跨越马头内部区域的所有视线中,尤其是在IR峰位置周围,在JWST的整个光谱范围内,灰尘衰减似乎不可忽略。
麦当劳标准(Thompson等,2018),MS的诊断结合了临床,成像和实验室证据。神经系统检查与成像[磁共振成像(MRI)或光学相干断层扫描]和神经生理测试(视觉诱发电位)结合使用。在MRI上患有临床症状和病变的患者中,脑脊液通过腰椎穿刺收集。在脑脊液流体中存在寡克隆条带证实了MS的诊断(Thompson等,2018)。磁共振成像技术,例如双重反转恢复,相位敏感的反转恢复和使用梯度回声序列的磁化的快速采集来突出大脑皮层的MS病变。这些区域是由T1,T2或流体衰减反转恢复(Flair)方法获得的MRI图像中存在的高强度白质区域(Hitziger等,2022)。在图1a上,有一个示例MRI T1图像,带有两个病变,这些损伤显示为白质的高强度区域(Sarica和Seker,2022年)。在长轴中至少有3毫米的高强度区域被认为是病变(Thompson等,2018)。监测该疾病的演变,但治疗的效率也通过在年度随访MRI图像上出现或没有新病变来分析(Martínez-Heras等人,2023年)。在MRI图像上对脱髓鞘区域的手动识别和划定(图1B)具有一些缺点,耗时,需要合格的人员。其结果取决于专家解释MRI图像的经验。除了人为因素的主观性外,还可能发生差异,这是由于不同分辨率或具有各种质量的MRI图像而发生的。为了减少这些缺点,已经提出了几种用于诊断和监测MS的自动解决方案(Shoeibi等,2021)。通过在深度学习算法中使用神经网络与纹理分析相结合(Componick等,2021a),获得了与专家注释相当的结果。纹理分析是医学图像处理中的一种已知且有前途的技术,可在检测硬化病变方面具有显着的结果(Elahi等,2020; Boca等,2023)。通常,尝试通过那些特征来检测病变,这些特征是强度,照明,几何变换或噪声变化的图像不变的。为此,量化了像素强度和像素分布的相互关系,因此获得了许多特征。这些功能可以分为以下类别:第一阶特征(灰度直方图分析),二阶特征(灰度依赖矩阵),光谱特征和分形特征(小波变换和傅立叶变换)。用随机纹理识别的像素被归类为噪声(Friconnet,2021)。为了提高信号噪声比并降低噪声,将包括数学过滤组成的预处理操作应用于MRI图像。为例,高斯带通滤波器用于消除背景噪声(Kumar等,2023)。放射线学的方法由于出现了用于检测医学图像病变的自动方法(Lambin等,2012),因此有必要开发一种方法来通过自动检测方法来分析和评估结果的可重复性和质量。放射素学已逐渐应用于病理损害,诊断,差异诊断和MS预后的分析。开发了使用放射线特征的机器学习(ML)模型来检测MS病变(Peng等,2021)。
重新利用全身麻醉的脑电图监测来建立大脑老化的生物标志物:一项探索性研究 David Sabbagh* a,b 、Jérôme Cartailler a,c 、Cyril Touchard c 、Jona Joachim c 、Alexandre Mebazaa a,c 、Fabrice Vallée a,b,c 、Étienne Gayat a,c 、Alexandre Gramfort b 、Denis A. Engemann* b,d,ea 巴黎大学,INSERM,U942 MASCOT,F-75006,法国巴黎 b 巴黎萨克雷大学,因里亚,CEA,帕莱索,法国 c 麻醉和重症监护医学系,AP-HP,Hôpital Lariboisière,F-75010,法国巴黎 d 马克斯·普朗克人类认知和脑科学研究所,系神经病学, D-04103,德国莱比锡和罗氏制药研究与早期开发、神经科学和罕见疾病、罗氏巴塞尔创新中心、F.霍夫曼 - 罗氏有限公司,瑞士巴塞尔 通讯:* david.sabbagh@inria.fr,denis.engemann@roche.com 背景:EEG 是监测麻醉深度的常用工具,但很少在生物医学研究中重新使用。本研究旨在探索在麻醉期间重新利用 EEG 来了解在失去意识的情况下大脑衰老的生物标志物。 方法:我们以大脑年龄估计为例。使用机器学习,我们重新分析了 323 名接受丙泊酚和七氟醚治疗的患者的 4 电极 EEG。我们应用最近发表的参考方法,将稳定麻醉的空间光谱特征纳入基于 EEG 的年龄预测中。当 95% 的总功率低于 8Hz 至 13Hz 之间的频率时,认为麻醉稳定。结果:我们考虑使用丙泊酚麻醉的中度风险患者(ASA <= 2)来探索预测性 EEG 特征。平均 alpha 波段功率(8-13Hz)可以提供年龄信息。然而,通过分析所有电极的整个功率谱(MAE = 8.2y,R2 = 0.65),可以实现最先进的预测性能。临床探索表明,大脑年龄与术中爆发抑制系统相关——通常与与年龄相关的术后认知问题有关。令人惊讶的是,高危患者(ASA = 3)的大脑年龄与爆发抑制呈负相关,这表明存在未知的混杂效应。二次分析显示,大脑年龄 EEG 特征是丙泊酚麻醉所特有的,这反映在七氟醚下的预测性能有限和跨药物泛化能力差。结论:全身麻醉中的脑电图可能实现最先进的脑年龄预测。然而,麻醉药物之间的差异会影响麻醉中脑电图再利用的有效性。为了释放脑电图监测在缺乏意识的情况下用于临床和健康研究的潜在潜力,收集具有精确记录的药物剂量的更大数据集将是关键的促成因素。关键词:全身麻醉、脑电图 (EEG)、脑老化、机器学习、爆发抑制、丙泊酚、七氟醚
30.1 理论宇宙射线 (CR) 是遍布宇宙的非热粒子群。它们的显著特征可以从其主要的观测特性中推断出来:光谱、成分和到达方向。对于带电 CR,能量从几十 MeV 到接近 1 ZeV,强度在 1 GeV 以上为 ∼ 104 m − 2 s − 1 sr − 1,但差分谱随能量 E 急剧下降,遵循幂律依赖性 E − γ。最显著的光谱特征是在几个 PeV 处的“膝盖”,其中谱指数 γ 从 ∼ 2.7 变为 ∼ 3,“第二个膝盖”在 ∼ 100 PeV 处变为 ∼ 3.3 和在几个 EeV 处的“脚踝”,γ 变为 ∼ 2。 5. 通量在几十 EeV 以上被大大抑制。(有关光谱特征的更详细讨论可参见下文第 30.2.1 和 30.2.2 节。)带电 CR 主要由质子、氦和其他原子核以及电子、正电子和反质子组成。到达方向大多是各向同性的,但在膝点以下和周围,由于源的分布和银河系磁场的特性,观察到有趣的 O(10-4...10-3)各向异性,在最高能量下达到 ∼O(10-1)。伽马射线可分解为来自天体物理源的伽马射线(50 MeV 以上约 6660 [ 1 ],TeV 能量下约 300 [ 2 , 3 ]),以及来自银河系和河外星系的弥散通量,主要表现出对能量的幂律依赖性。高能中微子的观测打开了一扇新的窗户;虽然分布基本上是各向同性的,但已经发现了两个河外星系源以及来自银河系平面的贡献的证据。带电 CR、弥散伽马射线和中微子的能谱如图 30.1 所示。对带电宇宙射线、伽马射线和中微子以及引力波的综合观测(见第 21.2.3 节)为我们了解最极端的天体物理环境提供了有价值的见解,这被称为多信使天体物理学。将所有物种的贡献相加,可得到全粒子谱。虽然长期以来人们认为它是一个没有特征的幂律,直到几个 PeV 的膝盖,但现在人们认识到它具有更多的结构,反映了各个物种的特征。这些特征包含有关宇宙射线加速和传输的重要信息。使用的能量变量是动能 E,即每个核子的动能,对于质量数为 A 的粒子,E n = E/A,或对于电荷数为 Z 的粒子,刚度 R ≡ pc/ ( Ze )(以伏特为单位),p 是粒子的动量;术语“刚度”是指在磁场 B 中抵抗偏转的能力:刚度低(高)的粒子具有小(大)的回旋半径 rg = R /B 。动能与量热仪器的实验特征密切相关,而刚度则是光谱仪器最自然的特征。还要注意,相对论性原子核的能量损失很小,它们的传输由磁场决定,因此它只取决于刚度。核子强度 J 也称为弥散通量,是通过能量在区间 [ E, E + d E ] 内的粒子的微分数 d N 来定义的,这些粒子在时间 dt 内从立体角 d Ω 穿过面积 d A:d N = J d E d A d Ω dt 。其各向同性部分与微分密度 ψ = (4 π/v ) J 有关,v 为粒子速度,与相空间密度 f 有关,即 J = p 2 f 。注意,强度也可以根据每个核子的粒子能量或刚度来定义。为了强调这一点,强度通常写为 d J/ d E 、d J/ d En 或 d J/ d R 。在探测 CR 方面,有两类技术 [ 4 ]。直接观测(见第 30.2.1 节)利用粒子物理探测器(例如跟踪器、光谱仪和量热仪)中的 CR 相互作用。鉴于此类仪器的曝光有限且光谱急剧下降,目前仅在低于 ∼ 100 TeV 时才切合实际。在间接观测(见第 30.2.2 节)中,