所研究的样品是NAYF4:YB,ER UCNP,具有聚乙胺(PEI)聚合物涂层,分散在浓度为10 mg/ml的去离子水中。UCNP色散以10 mm×10 mm石英比色杯持有,并使用FS5光谱荧光计进行了表征。为激发,FS5配备了带有脉冲调制盒(PM-2)的2W 980 nm激光二极管,可同时使用CW和脉冲操作。用于检测,FS5配备了两个光电探测器:PMT-900和PMT-1010(FS5-NIR升级)和多通道缩放(MCS)寿命电子电子产品。频谱范围为200-900 nm的PMT-900用于光谱和寿命测量,而其扩展光谱范围为1010 nm的PMT-1010用于确定量子屈服。样品比色杯持有用于光谱和寿命测量的SC-05标准比色杯模块,而SC-30集成球模块用于量子屈服测量。
微塑性污染已成为全球重要的环境问题,影响了海洋,陆地和大气生态系统。随着微塑性污染继续加剧,需要精确,有效和可扩展的检测方法的需求正在增长。本评论重点介绍了微型检测技术的最新进展,特别关注激光直接红外(LDIR)光谱法。利用量子级联激光器(QCL),LDIR具有快速,敏感和自动检测功能。与诸如傅立叶变换红外(FTIR)和拉曼光谱技术等传统技术相比,它大大减少了分析时间,使其非常适合大规模的环境监测。其识别小至10μm的颗粒的能力,结合了增强的波长精度,将LDIR定位为跨各种环境矩阵的微型分析的有前途的工具。尽管有一些局限性,例如较窄的光谱范围,但LDIR的较高速度和精确度使其成为理解和解决全球微型塑料危机的关键进步。
四十多年前,频域电磁 (FDEM) 方法促成了首次航空电磁 (AEM) 发现。尽管早期面临来自时域技术的竞争,但 FDEM 尤其是直升机电磁 (HEM) 多年来蓬勃发展并多样化,成为采矿勘探的主要工具之一。随着传感器和解释技术的成熟,应用变得越来越定量,特别是在工程和环境任务中。为这些应用开发的 FDEM 方法的改进现在正应用于矿产勘探。校准精度和稳定性已成为这些定量调查数据解释质量的重要因素。随着技术的不断改进,诸如检测细微特征等困难的勘探问题(由于系统精度和分辨率不足而目前无法访问)正变得可处理。勘探人员和仪器/解释专家的共同努力对于这些新应用的开发至关重要。未来十年的技术改进可能包括系统硬件和软件的进一步集成、引入具有更宽光谱范围和密度的系统、增强校准能力、减少系统噪声和漂移以及更好地跟踪传感器方向。
EELT 仪器 望远镜需要仪器来探测光子并生成数字图像和光谱。正如可以预料的那样,这些仪器也带来了重大的工程挑战。人们正在研究一系列仪器概念来解决科学问题,从探测和了解系外行星,到早期宇宙中星系的成像光谱。这些仪器的光谱范围从 0.35 到 14 μm,光谱分辨率 (λ/Δλ) 从几十到 150,000,视场从 1 角秒到 10 角分。这里展示了英国-法国 EAGLE 概念的一个例子,它展示了技术挑战。该仪器旨在通过同时收集和分析来自 20 个星系的红外光来提高望远镜的效率。机器人目标选择系统用于将拾取镜放置在仪器焦平面上的星系图像上。光束控制镜将这些图像中继到一组成像光谱仪。每个通道都包含一个自适应光学系统,该系统采用一种称为多目标自适应光学的新技术。EAGLE 仪器将使人们能够研究早期宇宙中的星系动态,以帮助了解它们是如何形成的以及它们中恒星形成的速度有多快。
为了寻找新的和替代能源,太阳能电池(SC)是环保,可持续和可再生能源的源泉。因此,提高SC的效率和降低成本是非常重要的任务,这些任务与太阳能的光伏转换密切相关。相应地,预计光伏元素的第三代磁盘有效,稳定和通过环保,节能和低成本技术产生。半导体纳米材料,尤其是金属氧化物和硅量子点[1-9]发挥了重要作用。这些材料对于光伏设备特别感兴趣,这是由它们的光学和电子特性归因于其表面和量子大小效应的解释。在吸收光层中应用半导体NP的应用是由诸如较大的表面积以有效吸收光吸收的大型表面积,负责提高功率转换效率的电荷载体的缩短[10],以及依赖尺寸的带量[11-13]的收集长度[11-13],允许其最大的调谐太阳能谱(符合太阳能光谱范围)(ev)(1.4 ins 1-1-14)。在适合此带隙能的材料中,最广泛使用的是硅,GAAS,
摘要:可见全色 (PAN) 和高光谱 (HS) 光谱范围之间差异较大,限制了反射域中的高光谱全色锐化方法,这显著导致 SWIR(1.0–2.5 µ m)光谱域的表示效果不佳。本研究提出了一种新颖的仪器概念,即在 SWIR II(2.0–2.5 µ m)光谱域中引入第二个 PAN 通道。提出了两种扩展融合方法来处理两个 PAN 通道,即 Gain-2P 和 CONDOR-2P:第一种方法是 Brovey 变换的扩展版本,而第二种方法在 Gain-2P 中添加了混合像素预处理步骤。通过遵循详尽的性能评估协议(包括全局、精细和局部数值分析以及监督分类),我们在近郊和城市数据集上评估了更新的方法。结果证实了第二个 PAN 通道的显著贡献(两个数据集的平均归一化间隙在反射域中提高了 45%,仅在 SWIR 域中提高了 60%),并揭示了 CONDOR-2P(与 Gain-2P 相比)在近郊数据集方面的明显优势。
太阳是研究粒子加速的得天独厚的地点,粒子加速是整个宇宙中一个基本的天体物理问题。极紫外 (EUV) 包含许多在太阳大气的所有层中形成的窄发射线,其轮廓允许测量等离子体的密度和温度等特性,以及诊断非麦克斯韦粒子分布的存在。唯一的观察方法是从太空进行,因为地球大气会吸收 EUV 辐射。积分场光谱与偏振测量相结合是研究太阳的关键,但目前的 EUV 技术存在局限性:光纤 IFU(积分场单元)的传输率很低,飞行中的效应会影响偏振测量。最好的解决方案似乎是图像切片器。然而,这项技术尚未为 EUV 光谱范围开发。本文探讨了一种新的高效紧凑的积分场光谱仪布局,该布局基于图像切片器的应用,将 IFU 的表面与光谱仪的表面相结合,适用于太空应用。关键词:EUV 光谱、积分场光谱仪、图像切片器、太阳仪器、空间仪器
根据国际能源署 (IEA) 和欧洲环境署 (EEA) 的数据,能源消耗量逐年增加。这刺激了人们对新能源的探索和现有能源效率的提高。据预测,到 2030 年,光伏设备将产生太瓦级能源,同时千瓦时成本也将降低 [1]。太阳能是最经济实惠的能源之一。硅基太阳能电池主要用于太阳能利用。大部分能源将由硅太阳能电池板产生。除了硅之外,还有各种多层复合材料,如 GaAs、CdTe、Cu(In,Ga)Se 2 和最近提出的钙钛矿结构 [2, 3]。后者价格昂贵,难以在工业规模上生产。此外,由于有毒成分,过期后处理也存在问题,使用此类复合材料违背了绿色化学的原则。硅的优势在于化学可用性、技术链的成熟度、电子元件(包括含有稀土元素的元件)的处理。同时,硅基太阳能电池的一个严重缺点是光电转换效率 (LECE) 相对较低,即最佳样品的转换效率不高于 25% [4,5]。硅的最高光敏性区域位于约 1 µ m,其 LECE 光谱与太阳发射光谱的对应性较差。通过将太阳辐射从紫外线和蓝色光谱范围向下转换为 1 µ m 光谱范围来提高硅太阳能电池板的效率是一项紧迫的任务,对于太空应用而言,这非常现实 [6– 9]。潜在的发射体是三价镱离子,因为它的近红外 (NIR) 发光带约为 1000 nm( 2 F 5 / 2 – 2 F 7 / 2 跃迁)[9–13],与硅电池的 LECE 光谱顶部高度重合。Ba 4 Y 3 F 17 [14–17] 是经过深入研究的新型发光基质之一,因为它表现出下转换发光的高量子产率 [14]。对于在这些光谱区域吸收的各种敏化阳离子,能量可以从紫外和蓝色光谱区域转移到镱。一种特别有效的能量转移机制是通过敏化剂离子的逐步弛豫,通过量子切割机制激发两个受体离子 [12, 13, 18, 19]。量子切割表现出高达 195% 的高量子效率系数,但 NIR 发光的量子产率较低。更有效的途径是在具有更高发光量子产率的系统中简单地降档。一种有前途的组合物是 Yb/Eu 掺杂对,因为铕的吸收光谱包含 UV 和蓝色光谱区域的几条线。镱发光的最高直接测量量子产率(2.对于 SrF 2 :Yb (1.0 mol %):Eu (0.05 mol %) 粉末,在 266 nm 泵浦下达到 5 % [20]。本文旨在合成 Ba 4 Y 3 F 17 :Yb:Eu 固溶体并研究其发光性能。该样品旨在用于增强硅太阳能电池的 LECE。
摘要非酒精性脂肪肝病(NAFLD)的全球流行率接近25%,并且正在迅速增加。NAFLD中肝损伤的光谱范围从简单的脂肪变性到非酒精性脂肪性肝炎,其特征是存在小叶炎症和肝细胞气球变性,有或没有纤维化,它们可以进一步发展为Cirrhosis和Hepatocolhobil telecolhosis和肝细胞癌。NAFLD不仅是进行性肝病,而且大量证据也表明了肝外后果。积累的证据表明,NAFLD患者患心血管疾病(CVD)的风险也增加。实际上,CVD是NAFLD患者死亡率的最常见原因。肥胖症,2型糖尿病和更高水平的LDL是NAFLD和CVD中常见的危险因素;但是,NAFLD如何影响CVD的发展和发展仍然难以捉摸。在这篇综述中,我们全面总结了NAFLD关键肝外表现的当前数据,强调了NAFLD和CVD之间的可能联系,包括原始蛋白转化酶的遗产酶耐药蛋白/Kenin型9型,细胞外囊泡,微生物群,微生物群和遗传因素的作用。
摘要。通过大气色谱扫描成像吸收光谱仪 (SCIAMACHY) 的第 6 通道测量的羟基 (OH) 短波红外辐射 (OH(4-2、5-2、8-5、9-6)) 用于推算 80 至 96 公里之间的 OH(v = 4、5、8 和 9) 浓度。利用反演的浓度模拟大气探测宽带辐射测量 (SABER) 仪器测得的 1.6 µm 处的 OH(5-3、4-2) 积分辐射和 2.0 µm 处的 OH(9-7、8-6) 积分辐射,SCIAMACHY 测量的光谱范围并未完全覆盖这些辐射。平均而言,与使用 SCIAMACHY 数据的模拟相比,SABER“未滤波”数据在 1.6 µm 处大约大 40%,在 2.0 µm 处大约大 20%。 “未滤波” SABER 数据是一种产品,它考虑了仪器宽带滤波器的形状、宽度和透射,它们不覆盖相应 OH 跃迁的完整旋转振动带。研究发现,如果使用已发布的 SABER 干涉滤波器特性和 HI-TRAN 数据库中的最新爱因斯坦系数手动执行滤波过程,SCIAMACHY 和 SABER 数据之间的差异最多可减少 50%。讨论了与模型参数不确定性和辐射校准有关的剩余差异。