处理摘要:此讨论将提供光学信号处理领域的介绍和概述,重点是使用线性相位仅相位轻波操作的高效通用方法。这种方法已经实现了许多新颖的和大大增强的信号分析和处理功能,从高速电信到感应和光谱范围,使用简单的光纤启示或集成波形的设备技术。为了说明一般方法,该讨论将提供深入的洞察力,即对广泛实践兴趣的新框架,即,具有独特的经典信号和量子相关功能的时间和频率域波形的被动扩增。这种缓解噪声的方法可以恢复其他无法访问的信息,从而推动基础科学和应用科学的新边界。bio:JoséAzaña(Optica研究员)分别在1997年和2001年获得了西班牙的电信工程师学位和电信工程学位。在加拿大多伦多大学(1999年)和加利福尼亚大学 - 美国戴维斯分校(2000年)进行研究实习,他在加拿大蒙特利尔的麦吉尔大学(2001-2003)进行了博士后研究工作。随后,他加入了蒙特利尔的国家de la Recherche Scientifique - 中心Energie,Matériauxettélécommunications(INRS-EMT),他目前是教授,并且曾是加拿大研究主席“超级弹药信号处理”的持有人。
摘要:胶体纳米晶硅量子点 (nc-SiQDs) 在近红外 (NIR) 中的双光子激发以及在 NIR 中的光致发光在深度生物成像领域具有潜在的应用前景。使用双光子激发测量胶体 nc-SiQDs 的简并双光子吸收 (2PA) 截面的光谱,光谱范围为 1.46 < ℏ ω < 1.91 eV(波长 850 > λ > 650 nm),高于双光子带隙 E g (QD) /2,代表性光子能量为 ℏ ω = 0.99 eV(λ = 1250 nm),低于此带隙。直径为 d = 1.8 ± 0.2 nm 和 d = 2.3 ± 0.3 nm 的 nc-SiQDs(均用 1-十二烯钝化并分散在甲苯中)的双光子激发光致发光 (2PE-PL) 光谱强度与甲醇中已知浓度的罗丹明 B 染料的 2PE-PL 光谱强度一致。对于直径较小的纳米晶体,观察到 2PA 横截面较小,并且观察到 2PA 的起始点从块体 Si 的双光子间接带隙蓝移,这与激子的量子约束预期一致。在各种生物组织中模拟了使用 2PE-PL 进行生物成像的 nc-SiQDs 的效率,并将其与其他量子点和分子荧光团的效率进行了比较,发现在更深的深度下它们相当或更胜一筹。关键词:双光子吸收光谱、双光子吸收截面、硅纳米晶体、量子点、双光子激发光致发光、生物成像 N
拓扑绝缘子和超导体支持扩展的表面状态,以防止静态疾病的本地化作用。具体而言,在属于对称类A,AI和AII的Wigner-Dyson绝缘子中,通过光流的机理机制,延长的表面状态的带连续连接到同样的扩展式散装状态。在这项工作中,我们表明,大多数非官方 - 戴森拓扑超导体和手性拓扑绝缘子都没有这种机制。在这些系统中,精确有一个点,带有延伸状态,频段的中心e¼0。远离它,状态是空间定位的,也可以通过添加空间局部电位来制作。将AIII类和蜿蜒数量ν¼1中的三维绝缘子作为范式案例研究,我们讨论了这种现象背后的物理原理及其方法论和应用后果。尤其是我们表明,在表面状态描述中的低能量dirac近似可能是危险的,因为它们倾向于掩盖本地性现象。我们还确定了根据浆果曲率定义的标志物是晶格模型中状态定位程度的度量,并通过广泛的数值模拟来支持我们的分析预测。作为我们研究的一部分,我们确定了可能区分运输或隧道光谱中这些不同替代方案的可能实验特征。这项工作的一个主要结论是,非官方 - 迪森拓扑绝缘子的表面现象学比其Wigner-Dyson兄弟姐妹的表面现象学得多,极限限制是光谱范围的量子临界临界临界)所有状态的量子批判性地定位,除了在E¼0关键点外。
与许多候选光感应材料相比,INSB在III-V家族的胶体量子点(CQD)半导体中有望进入更广泛的红外波长。但是,实现必要的尺寸,尺寸差异和光学特性一直具有挑战性。在这里研究了与INSB CQD相关的合成挑战,发现不受控制的锑前体的减少会阻碍CQD的受控生长。为了克服这一点,开发了一种将非流传性前体与锌卤化物添加剂相结合的合成策略。实验和计算研究表明,锌卤化物添加剂减速了锑前体的还原,从而促进了更均匀尺寸的CQD的生长。还发现,卤化物的选择提供了对这种效果强度的额外控制。所得的CQD在光谱范围为1.26–0.98 eV的光谱范围内表现出良好的激发型转变,以及强发光。通过实施结合后配体交换,可以实现胶体稳定的墨水,从而实现了能够制造高质量CQD纤维的胶水。在1200 nm处提出了INSB CQD光电遗传学的第一个演示,在1200 nm处达到75%的外部量子效率(QE),这是最高的短波红外线(SWIR)QE在重型无金属质红外CQD基于CQD基于CQD的基于CQD的设备中所报道的。
双光子频率梳 (BFC) 是用于大规模和高维量子信息和网络系统的有前途的量子源。在这种情况下,单个频率箱的光谱纯度对于实现量子网络协议(如隐形传态和纠缠交换)至关重要。测量组成 BFC 的未预告信号或闲置光子的时间自相关函数是表征其光谱纯度并进而验证双光子状态对网络协议的实用性的关键工具。然而,通过实验可获得的测量 BFC 相关函数的精度通常受到探测器抖动的严重限制。结果,相关函数中的精细时间特征(不仅在量子信息中具有实用价值,而且在量子光学研究中也具有根本意义)丢失了。我们提出了一种通过电光相位调制来规避这一挑战的方案,通过实验证明了集成 40.5 GHz Si 3 N 4 微环产生的 BFC 的时间分辨 Hanbury Brown-Twiss 特性,最高可达 3 × 3 维二四分体希尔伯特空间。通过使电光驱动频率从梳状的自由光谱范围略微失谐,我们的方法利用 Vernier 原理来放大时间特征,否则这些特征会被探测器抖动平均掉。我们在连续波和脉冲泵浦模式下展示了我们的方法,发现与理论高度一致。我们的方法不仅揭示了贡献频率箱的集体统计数据,还揭示了它们的时间形状 - 标准全积分自相关测量中丢失的特征。
以及其他水体特性已使用光谱查找表 [7] 进行处理,其中前向辐射传输模型(如 Hydrolight [8])会针对不同的水柱特性、深度和底部类型重复执行。为了全面起见,这些查找表必须很大,并且可能需要针对特定的海岸类型进行调整,因为底部类型和水特性可能会因海岸类型而有很大差异。高光谱数据的一个吸引人的特征是,除了水深测量检索之外,它还能够同时满足多种用途。光检测和测距 (LIDAR) 也被广泛用于检索水深测量数据。LIDAR 的优势在于它是一种主动传感器,可以在较深的水域提供更高的精度,但是,与典型的机载高光谱传感器相比,诸如扫描水文作业机载激光雷达调查 (SHOALS) [4] 之类的 LIDAR 系统必须在非常低的高度飞行,并且扫描范围相对较小。在非常浅的水域(深度小于 2 米)中,LIDAR 系统通常无法提供可靠的检索,无法解决底部和表面回波之间的差异。在本文中,我们专注于这种非常浅的水域,特别是从可以假设相对简单的反射模型的光谱范围中检索水深。与可见光波长的反射率相比,必须仔细考虑水柱的所有贡献,近红外波长反射率(800nm 以上)主要取决于水的吸收率和深度,以及底部反射率,水柱成分起次要作用。
金刚石和最近的碳化硅中的自旋 S = 1 中心已被确定为可用于各种量子技术的有趣固态量子比特。金刚石中氮空位中心 (NV) 是研究较多的案例,被认为是适用于大多数应用的量子比特,但也存在重大缺点。最近的研究表明,SiC 中的双空位 (V Si VC ) ° 和 NV (V Si NC ) 中心可以克服许多缺点,例如与微电子技术、纳米结构以及 n 型和 p 型掺杂的兼容性。特别是,4H-SiC 多型体是一种广泛用于功率器件的微电子半导体,这些问题已经得到解决,并且大规模基板 (300mmm) 可供商业化使用。研究较少的 3C 多型体可以拥有相同的中心 (VV、NV),并且具有额外的优势,因为它可以在 Si 上外延,从而允许与 Si 技术集成。执行光学操控和自旋状态检测的光谱范围从金刚石中 NV 中心的可见光 632 nm 移至 SiC 中双空位和 NV 中心的近红外 1200 – 1300 nm(电信波长)。然而,还有其他关键参数对于可靠的信息处理至关重要,例如自旋相干时间、芯片上的确定性位置和受控缺陷浓度。在这篇评论中,我们重新审视并比较了金刚石中 NV 中心以及 4H 和 3C-SiC 中双空位和 NV 中心的一些基本特性。
微孔子Kerr光学频率梳或微梳是一组等距光谱线,它们是在泵送带有连续波谐振激光器的高Q谐振器后产生的。这些梳子近年来引起了强烈的研究兴趣,如参考文献中所述。1 - 5。典型的微栓生成平台是一个高Q分解器,它允许将长期的光子捕获在其曲折的特征模中,从而通过宿主介质的非线性相互作用。光学腔的特征是特征型的,这些特征是x''x r的准等式间隔,其中x r是谐振器的自由光谱范围,而整数eigennumber”代表了插入式光子的量化角动量('H'h'h'h'h'h'h'h = for Main Main Nabium rudius of Main Navius a)。当给定模式‘0用激光泵送时,可以将其视为参考很方便,以便使用还原的特征元素l¼'0'0来方便地标记特征模式。因此,微弹成分的目的是用谐振连续波激光泵送独特的模式l¼0,从而实现了有效的激发sidemodesl¼61; 6 2; …通过散装中等的Kerr非线性。在实验水平上,第一个演示涉及在整体窃窃私语模式模式谐振器中通过退化光子相互作用2 h x 0激发的高参数振荡!h xlÞHx l,其中两个频率x 0的泵光子向下 -
基于 LSTM 和 TRISHNA 太空任务中使用的设计,多光谱线性阵列为整个光谱范围(短波 (SWIR) 到甚长波 (VLWIR))的红外图像开辟了新的太空商业机会 Lynred 将于 6 月 8 日至 10 日在法国巴黎附近的 Optro 2022 上讨论用于太空应用的多线性和多光谱红外传感器的新发展 法国格勒诺布尔,2022 年 6 月 7 日——Lynred 是一家为航空航天、国防和商业市场提供高质量红外 (IR) 探测器的全球领先供应商,今天宣布推出两款多光谱线性阵列红外探测器,用于一系列地球观测任务。Pega 和 Capyork 旨在集成到成像卫星、用于水循环观察和干旱评估的跟踪和测量仪器以及海陆表面温度监测以及许多其他潜在的商业空间应用中。多光谱红外探测器使用户能够在覆盖从短波到甚长波的红外范围的多个光谱波长带中获得光测量值。它们在卫星上工作,收集沿卫星轨道从同一场景同时拍摄的一系列红外图像数据,检索特定于地球观测应用的科学信息。作为基于 Lynred 为两项太空任务开发的红外探测器的衍生产品:由法国国家空间研究中心 CNES 领导的 TRISHNA(用于高分辨率自然资源评估的热红外成像卫星)和欧洲哥白尼陆地表面温度监测任务 LSTM,Pega 和 Capyork 将使未来的地球观测任务仪器能够:
摘要:向太空发射的长波辐射 (OLR) 是地球能量预算的基本组成部分。有许多相互交织的物理过程会影响 OLR,并推动和应对气候变化。光谱解析观测可以解开这些过程,但技术限制阻碍了精确的空间光谱测量,覆盖 100 至 667 cm −1(波长在 15 至 100 µ m 之间)的远红外 (FIR)。因此,地球的 FIR 光谱基本上无法测量,即使至少一半的 OLR 来自此光谱范围。该地区受到对流层上部和平流层下部水蒸气、温度递减率、冰云分布和微物理的强烈影响,所有这些气候系统中的关键参数都变化很大,而且仍然很少被观察和理解。为了覆盖地球观测中这一未知领域,远红外外向辐射理解与监测 (FORUM) 任务最近被选为 ESA 的第九个地球探测器任务,将于 2026 年发射。FORUM 的主要目标是首次以高绝对精度测量光谱分辨 OLR 的远红外分量,具有高光谱分辨率和辐射精度。该任务将提供全球观测的基准数据集,这将大大增强我们对地球大气关键强迫和反馈过程的理解,从而能够更严格地评估气候模型。本文介绍了该任务的动机,强调了新测量预期带来的科学进步。